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Executive summary 

This report details work completed in developing and applying innovative quantitative techniques to 
estimate the progress of vertebrate pest control programs. The report outlines new techniques in the 
development of quantitative methods for combining possibly disparate types of monitoring data to make 
better inferences on the effectiveness of vertebrate pest control programs. First, the report describes the 
application of the Approximate Bayesian Computational (ABC) methods to the analysis of monitoring data 
arising from vertebrate pest control operations, using the red fox incursion in Tasmania as a case study. 
Second, a fully Bayesian spatial detection model was developed to estimate population density from 
detection/non-detection data in situations where the sampled population is not individually identifiable.   
The methods underlying this model were developed after the application of ABC type analysis to these data 
proved unsatisfactory. 

Applying the ABC method to data on red fox carcass discoveries in Tasmania illustrates how it can provide 
inference on model parameters in addition to measures of management success, such as the probability of 
eradication or whether eradication can be achieved under the current management regime. This includes 
the likely distribution of the population if still extant, its demographic parameters, and likely timing of 
introductions. We also demonstrate how the technique can be used to inform management decisions by 
forecasting the probability of population extinction in future years, along with the probability of a further 
carcass being detected either as road kill or after being shot by hunters. Combining these two measures can 
provide an estimate of when management authorities will either know that eradication is not yet attained 
(e.g. a future carcass detected) or the population is extinct. 

We first tested the Bayesian spatial detection model on known (simulated) populations, then applied it to 
estimate the distribution and abundance of foxes in the Grampians National Park from remote camera 
surveys collected during the ‘Grampian Ark’ project. The resulting density estimates appear reasonable, 
although the confidence intervals are wide, reflecting the sparseness of the data arising from the intensive 
fox control operations in place.  The new computational method appears to work efficiently, but the 
resulting parameter estimates were highly skewed and requires data with many sampling occasions, which 
may limit its use in certain situations. Further investigation of this new model is ongoing.
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1 Introduction 

During a vertebrate pest eradication program it is critical to have timely provision of information to support 
decision making. This information would inform management decision points such as:  

1. What is the most likely size of the pest population under control, and what are its underlying 
demographic parameters?  

2. Are the current management actions achieving the aim of driving a pest population into decline [a 

necessary criteria for eradication (Bomford and O’Brien 1995b)?  

3. What is the likelihood that the target population has been successfully eradicated, given the available 

monitoring information?  

Measuring the underlying parameters of a low density pest population presents special challenges, 
especially when the information available is from a diverse range of sources (e.g. public sightings, camera 
traps, road kills, DNA forensics) spread across space and time. The space-time complexity makes explicit 
traditional probability (likelihood) calculations near impossible, especially if the data are sparse (as is often 
the case in the early stages of invasions). Indeed, the problem is not amenable to formal likelihood-based 
statistical inference other than for grossly simplified non-spatial models of the process (see Caley and Barry 
under review and references therein). 

There is a need to develop robust techniques for synthesizing such data within operational timeframes to 
enable pest managers to make the best decisions possible.  Ideally techniques should be able to 
incorporate prior knowledge of population parameters, but also be appropriately conditioned on available 
data.  

This project aimed to:  

• develop methods and demonstrate how disparate types of data collected (perhaps) haphazardly in 
space and time can be  used to make quantitative inferences about the underlying vertebrate pest 
population under control;  

• demonstrate how the proposed inferential techniques may be used to monitor and inform 
vertebrate pest control programs in real time;  

• communicate the technique to stakeholders. 

We focus initially on the application of Approximate Bayesian Computational (ABC) methods to the kinds of 
sparse data often available during the early or late stages of vertebrate pest eradication programs. Where 
ABC methods are unsuccessful or unnecessary, we explore alternative conventional Bayesian methods.  
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2 Estimating the success of vertebrate pest 
eradications using Approximate Bayesian 
Computation 

2.1 Methods 

2.1.1 BACKGROUND ON APPROXIMATE BAYESIAN COMPUTATION 

Approximate Bayesian Computation (ABC) is a powerful method combining Monte Carlo-type simulation, 
Bayesian statistics and data for making inference on dynamic processes that may be difficult or impossible 
to observe directly.  ABC methods are a relatively recent methodological technique made possible by 
increasing computing power.  The approach differs from pure Monte Carlo simulation techniques in that 
the observed data (e.g. sightings, bait take etc) actively constrain the simulations so that model inference is 
conditioned on the observed data. In addition, the Bayesian nature of ABC inference allows straightforward 
incorporation of prior knowledge (belief) of population parameters. The method has recently come to 
prominence with increasing desktop computer power, though has been applied predominantly in the field 
of population genetics (Csillery et al. 2010). In particular, being “likelihood-free”, ABC methods are useful 
for inferring posterior distributions where likelihood functions are computationally intractable or too costly 
to evaluate (Toni et al. 2009). They have recently been proposed as having application to making inference 
during biological invasions (Rasmussen and Hamilton 2012). 

A brief outline of the rationale and process of ABC is as follows: 

• Let θ  be the model parameters generating the observed data D . In our first case-study (detailed 
below) the model describes the spatial and temporal distribution of foxes and the data are 
spatially-referenced observations of road-killed and hunter-killed foxes. Managers are particularly 
interested in estimating the model parameters as a means of making inference about the 
population under control. 

• A stochastic (i.e. chance) process often underlies the likelihood computation, and this process may 
be complex, making explicit probability (likelihood) calculations difficult or impossible. Thus, 
calculating the probability of the data given the parameters [written )|( θDP ] may be intractable, 

either quickly enough or theoretically, to enable standard likelihood-based inferential approaches.  

• The ABC approach side-steps the need to compute the likelihood (hence is sometimes referred to 
as a “likelihood free” methods). The steps for a simple implementation of ABC are as follows. First, 
a set of model parameters θ  are generated from the prior distribution [denoted )(θπ ]. Next, a 

data set [denoted D′ ] is simulated from a stochastic model using θ . The “distance” measure 
between the simulated data and the observed data is then calculated. Formally we denote the 
function to calculate this distance as ρ  and the distance between the simulated and observed data 

as ),( DD′ρ . Now let ε  be a measure of the discrepancy between the observed and simulated 

data for which the model simulation will be “accepted”. That is, if ερ <′ ),( DD , accept the chosen 
model parameters, then repeat the process generating new model parameters from )(θπ  until 

there are enough accepted parameter sets to describe the posterior distributions of the model 
parameters.   
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It should be noted that as the measure of allowable discrepancy becomes very large ( ∞→ε ), the process 
simply generates samples from the prior distributions. That is, the inference is not informed by the data in 
any way. Alternatively, if we only accept simulated data that exactly matches the observed data (i.e. 0=ε ), 
then the process generates samples from the posterior distribution of interest [i.e. )|( Df θ ]. The problem 
with this approach is the probability of exactly generating the observed data becomes near-impossible for 
problems of even moderate complexity. Hence, the choice of ε  reflects tension between computability 
and accuracy.  It should also be noted that the distance function could apply to the raw data, or some 
summary measure of the observed data (denoted S ) or the simulated data (denoted S ′ ) (Beaumont 2010). 

2.2 Case study – Incursion of the red fox in Tasmania 

The apparent incursion of the European red fox (Vulpes vulpes) into Tasmania has caused considerable 
alarm due to predicted severe negative impacts on biodiversity. Indeed, Tasmania is home to several small 
mammal species that are extinct on the Australian mainland other than within predator-free exclosures, 
with the introduced red fox inferred to be one of the main drivers of extinctions of these mainland 
populations (Johnson 2006; Saunders et al. 2010). The evidence for the incursion is varied, including 
sightings, footprints, carcasses, and DNA extracted from scats  (Berry et al. 2007; Sarre et al. 2012). Some of 
the data are contentious. An early scientific overview concluded that ``an unknown number of foxes have 
been deliberately and/or accidentally introduced to Tasmania since 1998 and that some of these and 
possibly their progeny are still living in the wild in Tasmania'' (Saunders et al. 2006). This resulted in an 
eradication program being instigated. This ongoing program to eradicate the purported fox incursion costs 
several million dollars annually, so there is practical interest in knowing the probability that eradication has 
been achieved and theoretical interest in methods of estimation. There is also a need to use the available 
data to infer what the most likely geographic distribution of the fox population is, if it is extant. Here, we 
are not interested in debating the credibility of the evidence, but rather in exploring the information 
available from the simple citizen-derived sighting records of fox carcasses considered by Tasmanian 
authorities to be credible.  In particular, we choose to analyse the irrefutable evidence that fox carcasses 
have indeed been found in Tasmania – it were these data that alerted the authorities to the possibility that 
an incursion was underway. These “citizen science” type data will also be available at minimal cost for the 
foreseeable future and will most likely remain an important basis for making inference on the incursion. 

2.2.1 CARCASS DISCOVERY DATA 

Data on the discovery of fox carcasses were taken from publicly available data provided by the Fox 
Eradication Branch of the Tasmanian Department of Primary Industries, Parks, Water and Environment 
(http://www.dpiw.tas.gov.au/)  and span the years 2001 to 2006 (Table 1).  

 

Table 1. Details of fox carcasses found in Tasmania. Further details can be found at http://www.dpiw.tas.gov.au/.   

Year Location Type 

2001 Symons Plains—the “Bosworth fox” Hunter kill 

2003 Burnie—“Burnie road kill” Road kill 

2005* Lillico Beach Road kill 

2006 Cleveland Road kill 

*Although officially reported as February 2006, this carcass was first 
sighted in December 2005 
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2.2.2 SPATIO-TEMPORAL MODEL OF THE INVASION PROCESS 

Purpose & type 

In order to make inference about the likely demography, distribution and status of an invading fox 
population based on carcass discoveries, we require a spatio-temporal model containing the processes of 
interest. The purpose of the population spread model is to underpin inference on the spatio-temporal 
distribution of foxes in Tasmania, both now and into the future. To do this, the model needs to be simple 
enough that it is tractable computationally, and must marginalize to the process under question—are there 
foxes and where are they? In summary, the model must be “adequate” or “fit for purpose”.   

We use a cellular automata model with each cell representing a 5 km x 5 km area which is deemed to be 
suitable or not to be colonized by a breeding fox population. This cell size is reasonable in terms of the 
typical home range size of a fox. This size cell is reasonably larger than the typical home range size of a fox 
(5 - 7 km2) (Carter et al. 2012).  Clearly this is a major abstraction of the fox population, but we argue it is 
adequate within the modelling framework used.  

Assumptions include: 

1. Introduced foxes are effective reproductive units from the first year of introduction (e.g. a least one 
male-female pair); 
2. A female fox will always find a mate in each year (i.e. once occupied, a cell is capable of reproducing in 
each year); 
3. The number of road kills in a cell is trivial in terms of cell population dynamics (i.e. has no effect on cell 
reproductive performance); and 
4. The hazard of being hit on a road is constant for all major roads (predominantly highways). 
 
Clearly some of these assumptions can be removed or relaxed (e.g. getting traffic volume data to underpin 
the hazard rate on roads).  The ABC method requires that estimable parameters are assigned prior 
distributions. The details of these priors are given below.  

Habitat suitability 

The prior distributions of habitat suitability are based on previous empirical studies conducted in mainland 
Australia (Saunders et al. 1995 and references therein). The following land use classifications were deemed 
suitable to sustain a fox population––grazing of native pastures, forestry, plantations, modified pastures, 
cropping, horticulture, irrigated pastures and cropping, irrigated horticulture, intensive animal and plant 
production, rural residential, urban intensive uses and land in transition. Land use classifications deemed 
unsuitable were nature conservation (predominantly south-west Tasmania), managed resource protected 
areas, other minimal uses, and mining and waste. For the purposes of the model, we assumed foxes were 
unable to colonise unsuitable habitat.  This produced a fox habitat suitability map with 48% of Tasmania 
deemed suitable for foxes, and a spatial distribution very similar to that of Saunders et al. (2006) and Sarre 
et al. (2012).  

Locations of purported introductions 

Introductions were assumed to result in a breeding pair of foxes which are assumed to form a functional 
“occupied” cell. Based solely on the rumoured/alleged release locations of foxes (Saunders et al. 2006), in 
each simulation we introduced foxes to cells near Longford, Oatlands, and St Helens. Clearly the distance 
from a major road that the introduced population first establishes could have a large effect of the timing of 
the observed road kills.  To account for this, for any one simulation, first, the distance from a major road of 
the introduction was drawn from a uniform prior distribution on 0 to 25 km. An introduction cell with this 
setback from a major road was then selected with equal probability from the set of grid cells located within 
30 km of the townships at the centre of the rumoured release locations. Note that we do not include the 
possibility of self-introduction at a major port, for which one case has been documented, and could have 
been occurring repeatedly.  
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Timing of introductions 

The year of first introduction is rumoured to be 2001, although “accumulated evidence also 
indicates that such an act may have also occurred in 1999 and 2000” (Saunders et al. 2006). We backdate 
the rumoured date to include the possibility that foxes were introduced as early as 1995, and use a 
uniformly distributed prior on the period 1995—2001. 

Dispersal  

Two dispersal kernels were used, one to reflect what could be considered “natural” dispersal behaviour 
within an established fox population, and the second “invasion” dispersal behaviour to accommodate the 
hypothesis (untested) that the invading low density (and persecuted) fox population could have different 
dispersal characteristics due to the low density off conspecifics. The natural spread kernel is based on a 
Weibull distribution fitted to the data of Coman et al. (1991), who found that the great majority (70%) of 
red fox cubs were recaptured within 2 km of their original tagging location. For those that dispersed 
further, dispersal distances ranged up to 30 km with a mean of 11 km. The invasion kernel is circular, 
though with a flat density out to 30 km in all directions surrounding the occupied cell.  

Survival & reproduction 

The cell survival parameter )(q is the probability that an occupied cell will retain a breeding fox population 
from year-to-year.  A uninformative prior (Uniform [0,1]) was chosen, reflecting uncertainty as to the 
effectiveness of the fox eradication program (e.g. no confirmed bait take by a fox as of end 2012), and the 
behaviour of the invading fox population, and the fact that past introductions have apparently failed 
(Statham and Mooney 1991). The cell reproduction number )(λ  which is the number of new occupied cells 
generated by occupied cell is similarly uncertain. Predation by Tasmanian devils (Sarcophilus harrisii) on fox 
cubs has been hypothesized anecdotally as a reason for failure of past introductions of foxes, though with 
the spread of devil facial tumour disease (DFTD) since about 1995 and associated major decline in devil 
abundance across much of northern and eastern Tasmania by 2006 (McCallum et al. 2007), this 
hypothesized effect may be weakened considerably. A uninformative prior (Uniform [0,2]) was used forλ  
(i.e. somewhere between zero and the expected number of female foxes per litter assuming a 50:50 sex 
ratio). The net reproduction rate )(NRR for this simple system assuming survival before reproduction is 
(using the formula for the sum of a Geometric series): 
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A NRR of one or greater is a prerequisite for population growth. 

Probability of road-kill 

Roads are a strong attractant for scavenging species such as foxes. For example, Snow et al. (2012) 
estimated the annual survival rate for San Clemente island foxes (Urocyon littoralis) was about 20% lower 
for individuals living near roads. We used the record of fox control on Philip Island (Kirkwood et al. 2005) to 
help inform a prior on the probability that an occupied cell with a road passing through it will generate a 
road kill in any year. Over the 25-year period 1979/90–2004/05, there were 1,000 foxes recorded as being 
removed from Phillip Island, of which 35 were road kills. The fox population was thought to number at least 
120-140 (removals of known cohort members) from 96/97 to 99/00. The island is about 100 km2, which 
would be the equivalent of four 5 km x 5 km square cells, which could reasonably be assumed occupied in 
each of the years. So, the rate of road kill is 0.35 cell-1 year-1. The corresponding probability of at least one 
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road kill will be about 0.30 cell-1 year-1. The population density of foxes in Tasmania is postulated as lower 
than that on Phillip Island, which also has a much higher density of roads, so the 0.30 was considered an 
upper bound. We were conservative on the low side, and used a Beta (10,90) distribution which has a mean 
of 10%, though considerable probability mass between 5% and 15% .  

Probability of shot-kill 

The hunting “observational” process in Tasmania is substantial, with in excess of 4,000 deer hunting 
licenses issued annually (DPIPWE – February 2011) to hunt the fallow deer (Dama dama), whose range 
overlaps extensively with the habitat considered suitable for foxes, though we note a lack of overlap on the 
northern coastal fringe. Elsewhere hunting of small introduced game species (e.g. European rabbits 
Oryctolagus cuniculus, European hares Lepus europaeus) is a popular pastime across Tasmania (author’s 
personal observation). In addition, permits are issued for the control of native species that can cause 
browsing damage to agriculture, such as wallabies (Macropus spp.) and brushtail possums (Trichosurus 
vulpecula). For the 2012–2013 season Wallaby licenses alone number nearly 7,000 (DPIPWE – February 
2013). Spotlight shooting, which is a recognized method to obtain fox carcasses, is a core method for much 
of this hunting. This effectively extends the hunting observational process to all of Tasmania other than the 
nature conservation estate. Despite the widespread nature of hunting in Tasmania, its effort is undoubtedly 
uneven in time and space. To allow for this, at the start of each simulation run, the probability of a cell 
being subject to potential hunting was randomly assigned using a 50% probability—that is hunting could 
occur on half the cells. This is an arbitrary choice on our part, and it’s main role is to accommodate the 
possibility that a fox population is extant in a cell not subject to “observation” by shooting.  

Generating a prior on the probability of shooting generating a shot fox from an occupied cell subject to 
hunting was difficult. Field et al. (2005) estimated the probability of detecting foxes within a 1 km segment 
of a spotlight transect ranged between 6 and 18% depending on vegetation, but  translating this to a typical 
annual probability of successfully shooting a fox within a 5km x 5km cell is difficult. We could again use the 
Phillip island data, although the intensity of spotlight searching effort was very high there—much higher 
than would be typical for a hunted area in Tasmania. In the end we settled on a Beta (10,90) distribution 
(same as the probability of a road kill), which again is possibly conservative on the low side. 

Ordering of events 

The ordering of events applied to occupied cells were survival, road or hunter kill, then reproduction.  

Estimating time to next carcass discovery or extinction 

The trajectories for accepted simulations (see below) with an extant fox population as of the end of 2012 
were projected stochastically out to 2022 using the parameters and state variables (e.g. spatial location of 
occupied cells as of 2012) unique to that simulation. These projections were used to estimate the time to 
the next fox carcass being detected, or the population going extinct, or either of these outcomes occurring.  

ABC computations 

The simplest ABC algorithm (ABC rejection sampler) in our case would involve: (1) Sampling a set of model 
parameters *θ  from the prior distributions )(θπ  specified above; (2) Simulating a dataset D′of road-killed 
and hunter-killed foxes using the spread model described; (3). Accepting the parameters *θ if a measure of 
the distance between the observed and simulated data is less than some arbitrary tolerance value ε (i.e. 

ερ ≤)',( DD  where d is some distance function); (4) Repeating step one until a sufficient number of 
parameter combinations are accepted to characterise the posterior distributions of the parameters of 
interest. Whether or not the posterior distributions are correctly characterized depends on the tolerance 
between the observed data and accepted simulations. As mentioned previously, as ε → 0, the correct 
posteriors are found with near certainty. The problem, of course, is that the probability of exactly 
reproducing the observed data may be so low that generating a sufficient number of samples for the 
posteriors may be computationally prohibitive. This is especially the case using rejection sampling which is 
inefficient due to repeatedly sampling areas of the parameter space that have a low probability of 
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generating the observed data.  Efforts to speed up the process generally involve the use of statistically 
sufficient summary statistics (if they exist) as a basis for estimating the discrepancy between D  and D′ , 
and the implementation of more efficient samplers. Toni et al. (2009) provide more details. 

Our measure of discrepancy was the sum over the observation period (conditional on the time of 
introduction) of the absolute difference between the number of observed and simulated carcasses, 
calculated separately for road kills and hunter kills. Approximate posterior distributions were generated 
using an ABC sequential Monte Carlo (ABC SMC) sampler (Toni et al. 2009)— a “particle filter”. Starting with 
1,000 particles (parameter combinations), the allowable discrepancy over the observation period between 
the simulated and observed road kill data was set to 2, 1, and then finally zero. We explore inference 
arising from road kill data only with that arising from both road kills and hunter kills. When including hunter 
kills, the allowable discrepancy for the hunter-killed data was set to 0 from the start. Hence for the final 
selection of accepted particles (and hence posterior distributions of parameters), the acceptance criteria 
was that the simulated road kills were exactly the same in number (n=3) and timing (years 2003, 2005 and 
2006) as was the simulated hunter kill (n=1, year=2001). No restriction was put on the location of simulated 
carcass discoveries (although this is clearly influenced by the choice of introduction location). To do so 
would require a much broader prior distribution of possible introduction locations. Higher ε  weren’t 
considered as this resulted in particles with trivial results (e.g. immediate extinction) to be overly 
represented early in the particle filtering process. Normal distributions were used as perturbation kernels 
for all parameters. We confirmed that the ABC SMC sampler was generating very similar posterior 
distributions to an ABC rejection sampler—our choice of the SMC sampler was to speed up computations.  

Software & hardware 

All calculations was undertaken within the R computing environment (R Development Core Team 2011) 
using the “raster” (Hijmans 2013) and “simecol”  (Petzoldt and Rinke 2007) packages. Ten computer 
processor cores were utilised to run ten independent ABC SMC simulations with the random number 
generator for each processor seeded with a different starting value using the set.seed() R function. 
Approximately 5,000 hours of processor time were required to generate 1,000 accepted simulations.   

2.3 Results 

A key point when interpreting the following results is that the posterior distributions of the parameters of 
interest are a probabilistic measure of belief in what value the parameter may take. 

Model of road kills and hunter kills 

The approximate marginal posterior distribution of the distance from the introduction site to a major road 
showed weak though consistent trends, with a slight preponderance for the releases being 5-10 km from a 
major road as opposed to either nearer or further (Figure 1). There was no correlation between the release 
distances (e.g. a distance release at one location is correlated with a closer release elsewhere). The most 
likely year of introduction was strongly skewed towards either 2001 (46% probability) or 2000 (36% 
probability), with the year 1999 somewhat plausible (12% probability) and earlier years unlikely (Figure 2a). 

The parameter space of accepted simulations shows an unsurprising strong dependence between the 
yearly cell reproduction number and yearly survival (Figure 2b). In future, it may be possible to put tighter 
priors on survival and reproduction, although this may not change the inference much. The estimated 
probability of a road kill is significantly changed from the prior (Figure 2c), with a modal value of about 13%. 
The estimated probability of a hunter kill is only slightly changed from the prior (Figure 2d). There was 
negligible difference in the inferred mode of dispersal (“invasion” 51% vs. “natural” 49%), hence we have 
no support for discarding either.  
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Figure 1. Distribution of setbacks from major roads for model fitted to road kill and hunter kill data as of end 2012.  
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Figure 2. Approximate posterior distributions based on accepted simulation runs for (a) Year of introduction; (b) 
Relationship between reproductive output per year and probability of yearly survival, with open circles indicating 
populations extinct at the completion of 2012; (c)  The probability density of being a road kill (bars) and the prior 
based on a Beta distribution (solid line); (d) The probability density (given hunting occurs in an occupied cell) of 
generating a hunter kill (bars) and the prior based on a Beta distribution (solid line). 

 

The trajectories of accepted simulation runs can broadly be characterized as small populations with low 
reproductive rates at risk of extinction, although for a small proportion of accepted simulations the 
population was widespread and increasing (Figure 3).     
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Figure 3. Population trajectories of 300 accepted simulations [for clarity] with arrows indicating year of carcass 
discoveries. The 2001 arrow is a hunter kill with the remainder road kills. 

The inferred population size as of the end of 2012 is most likely zero (extinct)  (c. 70% probability), or very 
small (1–5 occupied cells) with about 25% probability. There is about 5% chance the population occupies 
either a small (6–10) or moderate–large (>10) number of cells as of 2012 (Figure 4).  

 

Figure 4. Frequency distribution for the number of occupied cells at the end of 2012 out of 1256 habitable cells. 

The posterior distribution of cell occupation at the end of 2012 is characterised by very low occupancy 
probabilities (Figure 5), as most surviving populations were highly restricted (Figure 4). Cells with higher 
probabilities of occupancy tended to be located away from major roads (Figure 5). Specific differences 
between posterior distribution of foxes inferred by our ABC results and that of the recent analysis of Sarre 
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et al. (2012) include a virtual absence of possible occupation to the south-east and south-west of Hobart—
areas  where fox DNA positive predator scats have reportedly been found. 

 

Figure 5. Approximate posterior distribution of the distribution of cells occupied by the red fox in Tasmania as of 
the end 2012 based on hunter kill and road kill observation process. Solid lines are major roads. A smoother 
distribution could be generated by increasing the number of accepted simulation runs.  
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The posterior distribution for the net reproduction rate suggests that either the population most likely has 
low demographic vigour, with only 4% of accepted simulations having a life time reproductive rate above 
one, or control operations are suppressing population growth (Figure 6). The lack of any clear evidence one 
way or the other on bait take by foxes means either explanation is possible. The interpretation of this 
would be that there is a 96% probability that the population will become extinct eventually under the 
current management regime, which may or may not involve foxes being removed from the population by 
poisoned baits. 

 

Figure 6. Approximate posterior distribution of the Net Reproductive Rate (NRR) of cells occupied by foxes. 

 

Estimated time to next detection or extinction 

Conditional on the model’s assumptions and prior beliefs, the probability that a further carcass is found in 
2013 is estimated to be about 5% and the probability that the population has become extinct increases to 
c. 75% (Figure 7).  Extending this into the future, by 2022, it is estimated that there is nearly 100% certainty 
that either the population has become extinct, or it has been detected by either a road or hunter kill (and 
hence it is apparent that further control is necessary) (Figure 7). That is, within 10 years, either extinction 
will be achieved with probability of about 90%, or it will be apparent that attempts to cause population 
extinction have failed. This inference, as previously stated, is conditional on a model fitted to road-kill and 
hunter-kill data only. 

Although the posterior distribution can be used now to make inference about future events, as further data 
are collected (e.g.  if 2013 passes without a subsequent road- or a hunter-kill) then the model will require 
updating if updated inference is required. 
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Figure 7. Probability of population extinction (dotted line), cumulative probability of at least one new road kill 
(dashed line), and the combined probability of either population extinction or at least one further road kill (solid 
line). Results based on 30 simulation runs on each of the 1,000 accepted runs finishing in 2012. 
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3 Estimating the density of vertebrate pests using 
detection/non-detection data from unmarked 
populations 

3.1 Background 

Many methods for sampling vertebrate pests are based on detection/non-detection (presence/absence) 
data where the identity of individuals detected remains unknown.   Usually, such data are subject to 
analysis to estimate the probability of occupancy for a sample location, corrected for imperfect detection 
(occupancy analysis) (MacKenzie et al. 2004).   While estimates of occupancy are useful in many contexts 
they are still a fairly crude representation of the dynamics of the population.  Indeed, many problems in 
vertebrate pest ecology require estimates of population density or abundance (e.g. harvest quotas, 
disease/damage thresholds).   Traditionally it has been assumed that it is difficult or impossible to estimate 
animal density from presence/absence data unless certain restrictive assumptions were made or 
supplementary information was collected.  However, previous studies have estimated local population 
density from presence-absence data assuming a functional relationship between detection probability p 
and local density N, the so-called Royle/Nichols (RN) model (Royle and Nichols 2003).   This estimator 
requires a similar design to traditional occupancy study that assumes independence between sample units.  
That is, individuals detected at a particular sample unit cannot be detected at other sample units.  If animal 
home ranges overlap multiple sample units then detections among neighbouring sampling units are 
correlated and estimates of population abundance using this model are biased high.  This is a particular risk 
in studies of animals with large home ranges, such as many carnivore species.  When sampling locations 
cannot be assumed to be independent, then estimation of density in unmarked populations is problematic.  
In this instance, recapture or resighting information on individuals is required for estimation to proceed 
(e.g. Borchers and Efford 2008; Royle and Young 2008). 

Recently Chandler & Royle (2013) developed a model for spatially-referenced count data that estimates 
animal density in unmarked populations using a spatial model of the detection process.  Unlike other 
estimators for count data, such as the N-mixture model (Royle 2004), the Chandler and Royle model 
(hereafter CR model) does not require sampling locations to be independent (i.e. i.i.d sampling).   The core 
of the model is the use of spatially correlated count data to infer a spatial point process representing the 
number and locations of animal home range centres.  Hence, the CR model is an extension of existing 
spatial capture-recapture models (e.g. Borchers and Efford 2008; Royle and Young 2008) applied to data 
from unmarked populations.   

However, many of the sampling designs used for carnivore surveys only yield detection/non-detection data 
rather than counts.  Methods such as tracking stations, bait-take, camera-traps, and scat-surveys may only 
be able to indicate the presence of an individual on a particular sample occasion rather than a count.  
Hence, it would be advantageous to be able to infer density from detection/non-detection data rather than 
rely on estimates of occupancy.  Here we extend the model of Chandler & Royle (2013) to enable density 
estimation for detection/non-detection data where sample locations are not independent (i.e. spatially-
correlated detections).   As the model is spatially-explicit, a by-product of the estimation process is the 
likely locations of home range centres within the sampled area.  We report on the performance of the 
extension of the CR model using simulation and illustrate its use with a practical example estimating the 
abundance of foxes in the Grampians National Park from detection/non-detection data from remote 
camera surveys. 
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3.2 Methods 

The model is based on that proposed by Chandler & Royle (2013) but modified to handle detection/non-
detection data and uses the same general notation where possible.   Their model is based on a Bayesian 
analysis of the latent encounters of spatially referenced individuals with sampling devices using data 
augmentation and Markov Chain Monte Carlo (MCMC) sampling.   For a more in-depth description of the 
CR model applied to count data, the reader is referred to Chandler & Royle (2013). 

3.2.1 SAMPLING DESIGN 

The sampling design consists of an array of J sampling devices having locations at  X=(x j1, x j2), (j= 1, 2, … J) 
and set for K occasions (k = 1, 2, … K).   The array of devices is laid out in such a way that individuals could 
potentially be detected at multiple devices (e.g. a ‘grid’ pattern).  Individuals may be detected at any of the 
X on any given occasion and hence, are considered to be ‘passive’ in that they record the presence of an 
individual but do not capture it.   Devices such as camera traps, tracking plots or bait stations are all 
sampling devices that have been used to produce detection/non-detection data.  As will be shown, the 
non-independence of devices induces spatial correlations in detections that can be used to infer the 
parameters of a spatial detection process.  Hence, the spatial placement of devices with respect to the 
home range size of individuals becomes important.   The observations at each device denoted hjk take 
binary values indicating detection of at least one individual on device j at occasion k.  Hence h1· =(01001) 
indicates detections on occasions 2 and 5 for device number 1.  The resulting data are a J × K matrix of 
detections h. 

3.2.2 SPATIAL DETECTION MODEL 

The conceptual model underlying the detection process is a spatially-explicit, individual-based model of 
detections in devices located in 2-dimensional space.  This model is structurally similar to the models 
underlying the detection process given in Efford (2004) and Ramsey et al. (2005).  Consider a population of 
N individuals that are potentially at-risk of being detected with each individual z i (i=1, 2, …, N) defined by a 
centre of activity si = (sx, sy), its nominal home range centre.  The locations of home range centres are 
unknown but are considered to be fixed for the duration of sampling.  Individuals move about their home 
range centres according to some probability distribution (e.g. bivariate normal) and in the process can 
potentially be exposed to detection (see below) (Figure 8).  We also assume that home range centres are 
distributed randomly over the area of interest A according to a random uniform distribution (e.g. Efford 
2004; Royle et al. 2009). That is,   

si ~ Uniform(A).         Eqn 1 

Structurally, this is similar to assuming that the home range centres are distributed according to a 
homogeneous spatial Poisson process with constant intensity (density) over the area of interest A.  
However, it is important to note that equation 1 implicitly allows for any configuration for the locations of 
home range centres.   Thus, inference is concerned primarily with estimating the locations of the unknown 
home range centres and hence, the abundance N (and  density) of individuals within the region A (e.g. 
Royle et al. 2009).   

Encounter process 

Individuals can only encounter devices that occur within their home range.  If we consider the situation 
with only one animal and one device, the probability of detecting the individual declines as a function of 
the distance d between the device and the home range centre.   Assuming movements around the home 
range centre occur with bivariate normal probability then the probability of detection is given by the half-
normal function: 
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where 0g is the per occasion probability of detection when the home range centre and device location 
coincide (i.e. d=0) and σ is the spatial scale over which the detection probability declines with increasing 
distance between the home range centre and the device (e.g. Efford 2004; Ramsey et al. 2005).   

 

Figure 8. Shape of possible detection functions showing the decline in the probability of detection for an individual 
with increasing distance between the detection device and the individuals home range centre.  Solid line – half 
normal detection function (equation 1), dashed line – uniform detection function; dotted line – exponential 
detection function.  For all three curves the parameters were g0 = 0.25; σ = 0.5. 

 

Equation 1 states that each individual z i with home range centre located at s i is detected at a device x j per 
occasion k according to 

( )ijijk pBernoulli~z  

However, the full detection histories for each individual and device z ijk are latent (unknown) and must be 
estimated.   When there are many devices (and individuals), this can be time consuming.  However 
Chandler & Royle (2103) showed that analysis can proceed without estimation of the full z ijk array by 
conditioning on the trap-specific detections, which in this case have the same discrete Bernoulli distribution  

( )jjk PBernoullih ~  

where the probability that at least one individual is detected in device j (Pj) is given by  
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Furthermore, as detections at each occasion are assumed to be independent, we can aggregate the 
detections at each of the J devices by noting that: 

( )KPBinomialn jj ,~  
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The estimation problem now reduces to one of estimating the latent s i and hence N, the number of 
individuals in the population.  Chandler & Royle (2013) fix the dimension of the estimation problem by 
considering the existence of M rather than N individuals in the population with M >> N.  Estimation then 
proceeds using parameter-expanded data augmentation where a set of M latent indicator variables w are 
introduced so that the model now becomes 
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This implies that when w i = 0 then the probability that individual i is detected in any trap (pi.) is also 0 and 
conversely, when w i =1, then individual i contributes their individual detection probability pij to the 
marginal trap total Pj.  Hence the estimate of population size 𝑁� (the number of home range centres 
residing within the area A is given by 
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The spatial detection model given above was fit using a similar Metropolis-within-Gibbs algorithm as used 
in Chandler & Royle (2013).  Prior distributions are required to be specified for 0g (on the logit scale to avoid 
numerical problems), σ and ψ, which can either be uninformative or reflect prior knowledge.  Prior 
information on home range size for many pest species of interest is likely to be available, which can be used 
to specify an informative or vaguely informative prior for the spatial scale parameter σ. This is illustrated 
for the estimation of fox abundance. 

3.2.3 SIMULATION STUDIES 

Single scenario 

We explored the spatial detection model using simulation to evaluate the properties of the model under 
different sampling conditions.  We conducted the simulations under similar conditions to that undertaken 
in Chandler & Royle (2013) so we could compare the simulation results for our presence/absence spatial 
detection model to the CR model for sample counts.  Hence, we simulated detection/non-detection data 
using a 10 × 10 grid of sampling devices set in the centre of a 15 × 15 area with unit spacing (Figure 9).  To 
illustrate the method, we initially simulated a single scenario with the number of home range centres 
(population size — 𝑁�) set to 20 and the parameters of the half-normal detection function (Equation 1) set 
to 0.25 and 0.75 for 0g and σ respectively and simulated detections over 20 occasions (Figure 9). We then fit 
the spatial detection model to the simulated data to determine whether estimation could recover the 
original parameters.   Estimation was conducted using 50,000 iterations of the MCMC algorithm with the 
first 10,000 treated as a burn-in sample and discarded leaving 40,000 iterations to form the posterior 
distributions of the parameters.   In addition to the parameters above, the MCMC algorithm also provides 
posterior samples of the locations of home range centres (si).  We constructed a density surface of the 

18   |  APARP Project GMS1520: Estimating the success of vertebrate pest eradication and control programs 



 

likelihood of the locations of home range centres from 10,000 posterior samples of si by fitting a 2D kernel 
density surface to the posterior samples using a Gaussian kernel with bandwidth set to 1.   

 

Figure 9.  The pattern of detections resulting from a simulated sample of  20 individuals (open triangles – location of 
home range centres) by an array of 100 devices set on a 10 x 10 grid with unit spacing (open circles) over 20 
occasions.  Devices that detected an individual on any occasion are represented by closed circles.   For this sample, 
the value of g0 was set to 0.25 and the value of σ set to 0.75. 

 

Extensive simulation study 

In addition to the above, we also undertook more extensive simulations to explore the properties of the 
model under a wider range of conditions.  Using the same 10 x 10 grid of sampling devices, we simulated 
scenarios with values of σ varied between [0.5, 0.75, 1.0] with two population sizes of [20, 50] individuals.   
In each case the value of 0g was set to 0.25 and the number of occasions was varied between [5, 10, 20] 
occasions.  This gave a total of 18 scenarios in all.   We simulated 100 replicate populations for each of the 
above scenarios and fit the spatial detection model using the MCMC algorithm given in the supplementary 
materials.   Each simulation consisted of 12,000 iterations of the MCMC chain with the first 2000 treated as 
burn-in samples and discarded leaving 10,000 iterations to form the posterior distributions of the 
parameters.   We computed the mean and mode of the posterior distributions for each simulation and 
calculated their root-mean-square-error.   The 95% coverage rates were also calculated as the proportion 
of simulations where the 95% credible intervals of the posterior distribution of N contained the true 
generating value. 

3.3 Case study – estimating population density of foxes in the 
Grampians National Park 

3.3.1 REMOTE CAMERA DATA 

Remote cameras (n=77) were deployed in the central valley region (approximately 385 km2) of the 
Grampians National Park (GNP) near Dunkeld, an area of high natural biodiversity (Figure 10).  This area 
was divided into hexagons of 500 ha representing the area of a typical fox home range (Saunders et al. 
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1995).  A random point within each hexagon was generated and the location used to place a camera.  Two 
camera types were used, ScoutGuard SG550 infrared and ScoutGuard SG565 white-light cameras (HCO, 
Norcross, Georgia, USA) and were set to take one image a second while there was motion detected, with 
no quiet period.  Each camera was attached to a tree at least 20cm above the ground and baited with a lure 
of chicken and tuna oil and set for an average of 28 days during February/March 2012.    

For each camera, the detection or non-detection of foxes was recorded on each night.  To define the area 
of interest A to conduct estimation, a convex polygon was drawn around the camera locations and then 
buffered by 2 km in each direction.  This gave a total area for the region A of 617 km2 (Figure 10).  A vague 
uniform prior, U(-10,10), was placed on the logit of g0, with a weakly  informative prior used for the home 
range scale parameter σ.   Home ranges of foxes in temperate areas of South-eastern Australia were 
estimated recently by Carter et al. (2012).   Their estimates of range size averaged around 7 km2 but varied 
from 2.5 - 11 km2 with a standard deviation of 3.2 km2. (Table 4, 95% MCP estimates of range size excluding 
the one “nomadic” individual).  Assuming ranges are roughly circular, this equates to estimates of the scale 
parameter σ for the half-normal detection function varying from 0.36 – 0.79 km (mean=0.6, variance=0.02).  
We represented this information by constructing a gamma prior with shape parameter of 18 and a scale 
parameter of 0.033, which gave adequate coverage of the desired range (Figure 11). The upper limit of the 
parameter M used for data augmentation was set to 600.  

 

 

Figure 10.  Location of Grampians camera survey for foxes.  Camera locations are indicated by open circles.  Filled 
circles indicate fox detections. 

We drew 40,000 samples from the MCMC algorithm from each of three chains using diffuse initial values 
and discarded the first 10,000 leaving 30,000 samples from each chain to form the posterior distribution of 
the parameters.  Convergence was assessed by calculating the Brooks-Gelman-Rubin convergence statistics 
R� (Brooks and Gelman 1998) and by visual inspection of the chains.  For each of the parameters, the 
number of home range centres (𝑁�) within the area A, and the parameters of the spatial detection function 
(g0, σ), were calculated as the mode of the posterior distribution with associated 95% credible intervals.   In 
addition we also estimated the likely locations of home ranges centres using 5,000 samples of the posterior 
distribution of the si, by fitting a 2D kernel density surface to the locations using a Gaussian kernel with 1.5 
km bandwidth.  

   

10 km
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Figure 11.  Gamma(18, 0.033) prior probability distribution used for the home range scale parameter σ for the 
Grampians fox data. 

 

3.4 Results 

3.4.1 SIMULATION STUDY 

Single scenario 

Visual inspection of the MCMC chain indicated the algorithm had converged after 10,000 iterations for each 
of the parameters of interest (Figure 12).  The posterior estimates of the number of home range centres (N�) 
was within 10% of the true generating value with the mean of the posterior distribution being slightly 
higher than the posterior mode (Table 2).  This was due to the slightly skewed nature of the posterior 
distribution (Figure 13). Similarly, the estimates of the detection parameters also exhibited low bias being 
within 14% ( 0g ) and 10% (σ) of their true generating values (Table 2). 

Table 2. Estimates of the posterior mean and mode of population size (𝑵�) and the parameters of the spatial 
detection function g0, σ and their true generating values used in the single scenario simulation. 

Parameter True value Estimate (mean) Estimate (mode) 95% CI 

N̂  20 21 18 11 - 37 

0g  0.25 0.22 0.22 0.14 – 0.30 

σ 0.75 0.82 0.79 0.68 – 0.98 
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The density surface of the posterior distribution of si was successful at identifying the true locations of the 
home range centres of individuals that were likely to have been detected (Figure 14).   Individuals on the 
periphery of the state-space (e.g. bottom centre-right corner of Figure 14) appear not to have been 
detected and hence, appear in an area of low likelihood. 

 

 

Figure 12.   The MCMC chain histories for the three parameters from the spatial detection model following 
convergence. 
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Figure 13.  Posterior distributions of the parameters for population size N and the parameters of the half-normal 
detection function ( 0g , σ).  The dashed red line indicates the true generating values for this particular scenario. 

 

 

 

Figure 14.  Density surface of the relative likelihood of locations of home range centres based of 10,000 samples of 
the posterior distribution of si for the single scenario. 

 

Extensive simulation study 

The mean of the posterior distribution used as an estimate of N for each of the scenarios, showed positive 
bias, especially when the number of occasions was low (K=5) (Table 3).   The high bias of the mean was due 
to the skewed nature of the posterior distribution of N̂ .   The posterior mode exhibited much lower bias 
and hence, is the preferred estimator for N̂ , a conclusion that was also reached by Chandler & Royle 
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(2013).   However, the mode of the posterior distribution was only approximately unbiased for  scenarios 
with either 10 or 20 occasions, and σ = 0.5 or 0.75 (Table 3).  Coverage was also close to nominal for these 
scenarios.  Scenarios with a low number of occasions (K=5) showed positive bias in the order of 10-50% and 
higher positive bias was generally exhibited in scenarios where σ was high (σ=1.0) (Table 3).  Coverage was 
also usually less than nominal for these scenarios.  In general, the performance of the spatial detection 
model was not as high as the model of Chandler & Royle (2013) using count data.  This is not unexpected as 
detection/non-detection data are a degraded form of count data and hence, have lower information 
content. Due to logistical constraints, the number of simulated scenarios used here was less than those 
undertaken in Chandler & Royle (2013) (100 vs 200) and the number of MCMC samples were also less 
(12,000 vs. 32,000).  Hence, the results used here should be treated as guide only and more extensive 
simulations are required to fully examine to properties of the spatial detection model. 

The estimates of the half-normal detection function ( 0g , σ) showed a similar pattern to the estimates of N.  
The posterior distributions of these parameters exhibited less skew than those for N and hence, there is 
less difference between the posterior mean and mode (Table 4).   Higher bias was evident in estimates for 
both 0g  and σ for scenarios with a low number of occasions (K=5).  However, when the number of 
occasions was high (K=10 or 20), estimates of both the mean and mode were approximately unbiased for 
all scenarios (Table 4).  

 

Table 3.  Estimates of the posterior mean and mode, RMSE of the mean and mode and 95% coverage of population 
size from the spatial detection model for scenarios with known population size of 20 or 50 individuals.  Estimates 
were calculated from 100 simulated populations for each scenario.  The value of g0 for all scenarios was 0.25. 

σ N K Mean RMSE Mode RMSE Coverage 

0.5 20 5 46.8 35.9 21.5 12.7 0.97 

 20 10 28.5 17.3 20.4 9.6 0.91 

 20 20 23.2 8.0 20.3 6.5 0.96 

 50 5 79.2 41.7 60.3 41.2 0.97 

 50 10 67.2 32.1 54.4 28.9 0.93 

 50 20 61.8 24.7 55.0 21.6 0.90 

0.75 20 5 39.5 32.3 23.8 21.3 0.93 

 20 10 29.5 17.6 22.1 10.9 0.92 

 20 20 23.1 9.1 19.5 7.0 0.96 

 50 5 76.3 39.7 58.1 36.5 0.98 

 50 10 66.7 32.4 52.9 31.1 0.93 

 50 20 63.1 26.8 52.1 22.4 0.96 

1.0 20 5 47.8 39.0 29.0 26.8 0.89 

 20 10 33.7 24.3 23.3 17.5 0.93 

 20 20 29.0 17.6 22.1 10.6 0.90 

 50 20 68.8 35.0 55.1 34.3 0.89 
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Table 4. Estimates of the posterior mean and mode of the parameters of the spatial detection function (g0, σ) for 
each of the 12 simulated scenarios with known parameters.  Estimates were calculated from 100 simulated 
populations for each scenario.  The value of g0 for all scenarios was 0.25. 

   0g  σ 

σ N K Mean Mode Mean Mode 

0.5 20 5 0.25 0.17 0.58 0.47 

 20 10 0.25 0.23 0.53 0.40 

 20 20 0.26 0.25 0.50 0.50 

 50 5 0.23 0.19 0.59 0.49 

 50 10 0.25 0.22 0.50 0.41 

 50 20 0.24 0.24 0.50 0.49 

0.75 20 5 0.24 0.20 0.76 0.70 

 20 10 0.25 0.23 0.72 0.59 

 20 20 0.24 0.24 0.75 0.75 

 50 5 0.24 0.22 0.78 0.70 

 50 10 0.25 0.22 0.76 0.62 

 50 20 0.24 0.24 0.74 0.73 

1.0 20 5 0.23 0.21 0.91 0.88 

 20 10 0.24 0.21 0.97 0.78 

 20 20 0.24 0.24 0.98 0.98 

 50 20 0.25 0.23 0.99 0.98 

 

3.4.2 ESTIMATING POPULATION SIZE OF FOXES IN THE GRAMPIANS 

The posterior estimate of N based on the mode of the posterior distribution was 63 foxes (Table 5).  
However the estimate was quite skewed with an upper 95% credible interval of 353 foxes.  The relatively 
low precision of the abundance estimate was most likely due to the sparse nature of fox detections in the 
data (Figure 10).  Corresponding estimates of density were 0.11 foxes km-2 (95% CI, 0.06 – 0.57) (Table 5).  
This is quite low for typical fox abundance in similar habitat, reflecting the fact that the site has been 
subject to intensive fox baiting since 1996 as part of the “Grampians ARK” project (Robley et al. 2012).   The 
posterior estimate of σ was 0.43 which was lower than the mode of the prior distribution used (0.566) with 
the posterior mass shifted to the left, compared with the prior distribution (Figure 8).  Hence, fox home 
ranges were estimated to be slightly smaller than assumed by the prior distribution with a most likely home 
range size of 3.5 km2 (95% CI, 1.3 – 8.9) (Table 5).   Daily detection by cameras was also low with the 
estimate of 0g being only 0.037 indicating the probability of a camera detecting a fox when the centre of 
the fox home range and camera location coincides.  This was similar to estimates of detection probability 
estimated from occupancy analyses applied to the same dataset (Robley et al. 2012). 
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Table 5.  Parameter estimates of fox population size N̂  (and density) as well as parameters of the detection 
function (g0, σ)  from the spatial detection model applied to detections in camera traps from the Grampians 
National Park. 

Parameter Estimate 
(mode) SD 2.5% 97.5% 

N̂  63 84.1 37 353 

Density (foxes/km2) 0.11 0.136 0.06 0.57 

0g  0.037 0.026 0.012 0.114 

σ 0.43 0.106 0.266 0.690 

 

 

 

 

Figure 15.  Posterior distributions of fox abundance N̂ , and the parameters of the half-normal detection function 
(g0, σ) using the spatial detection model applied to fox detections in cameras in the Grampian National Park.  The 
solid line overlaid on the posterior distribution for σ is the prior distribution used. 
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4 Discussion 

Our application of the ABC method appears successful when applied to the sparse carcass discovery data 
associated with the red fox incursion in Tasmania.  Our ABC model provides much more useful inference 
than the models based on the early work of Solow (1993a), which primarily make inference on whether the 
population is extinct but provide little additional inference about the population under control.  The ABC 
approach also allows much more realistic processes to be considered than is the norm in the literature. For 
example, the original model of Solow (1993a) assumed a constant sighting rate, effectively meaning that 
the population was constant until extinction.  Subsequent model elaborations such as declining sighting 
rate are considered by Solow (1993b) and Rout et al. (2009),  and are a first step in addressing the issue of 
model plausibility but are not the complete solution. In particular the assumption of a constant or declining 
sighting rate may be sound for rare species in what is often terminal population decline. The use, however, 
of a model assuming a constant or declining population to underpin `rules of thumb' for ceasing eradication 
programs of invasive species may be unsound. Attempts at eradication of invasive species often fail, 
whether they be vertebrates [other than those undertaken on islands] (Bomford and O’Brien 1995a), plants 
(Rejmanek and Pitcairn 2002) or insects (Myers et al. 1998) so the model assumptions need be applicable 
to all possible scenarios. Invasive species, by definition, have potentially robust demographics that can lead 
to a rapid change in abundance that may or may not overlap with sighting mechanisms. The spatio-
temporal approach we have taken here explicitly accounts for such a possibility, and allows the population 
to change stochastically. Inference on the likely distribution of the population if extant, demographic rates, 
locations and dates of introduction are examples of parameters for which the ABC method can provide 
inference.  

Attempts at estimating population density from detection/non-detection data using ABC methods (APARP 
Project GMS1520 Progress Report) did not meet with initial success.  Summary statistics of the spatial 
relationships among detections proved to be relatively uninformative about the spatial encounter process 
(spatial detection model).   The parameter expanded data augmentation model developed by Chandler and 
Royle (2013) has overcome the problems inherent in the ABC model by including locations of home range 
centres explicitly in the state-space and sampling from their target distribution using a new MCMC 
algorithm.  Since actual data likelihoods are specified in the model, approximate Bayesian techniques are 
not required.  Although more work is required to determine the properties of the new model applied to 
detection/non-detection data under a variety of real-world conditions, the new method holds promise.  
Results from the limited number of simulation scenarios suggests that the spatial detection model performs 
fairly well with relatively low bias using sampling designs where spacing between detection devices is less 
than the length of a typical radius of an individuals’ home range (assuming ranges can be approximated by 
a circular bivariate normal distribution) and the number of encounter occasions is high (i.e. 10 – 20).  The 
non-independence of sampling devices allows multiple devices to be encountered by a single individual and 
produces spatially correlated detections that are informative for estimating parameters of a simple spatial 
encounter process.     

To our knowledge, this is the first time that rigorous estimates of population density have been obtained 
from detection/non-detection data that does not require collection of any ancillary data (other than 
specifying prior distributions for parameters).   The occupancy/abundance model of Royle and Nichols  
(2003) is related to the current model in that detection probability and occupancy are explicitly modelled 
by population abundance.  However, the model of Royle and Nichols (2003) is usually not used to estimate 
population density as a parameter of interest as it requires that all sampling devices are independent, as 
well as the requirement to specify an effective sampling radius around each device with which to infer 
density.   The last requirement is strictly subjective and has a major influence on population estimates.  
These requirements are distinct from those of the current model where the area of inference is explicitly 
included as the state-space in the estimation process.  Estimation of population density is then trivial given 
the estimate of the number of home range centres present in the state-space.  The current model should 
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have wide applicability to a range of sampling situations that result in spatially correlated detection/non-
detection data such as bait take, scat surveys, tracking stations and chew cards, to name a few. 

Although the spatial detection model shows promise for inferring population density from detection/non-
detection data, there are a number of limitations of the model that may preclude its use in some situations.  
In particular, the posterior distribution of the abundance can be highly skewed, especially if data are sparse 
(as in our Grampians fox data).  This results in estimates of abundance with low precision, a finding that 
was also evident in the analysis of count data (Chandler & Royle 2013).   In addition, it appears that 
estimates with low bias and high precision require a high number of detection occasions (i.e. 10 - 20), 
which may preclude its use in some situations.  Further work is required to better define the limitations of 
the new model and this is the subject of ongoing investigations 
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