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1 Introduction 

Eradicating a pest species from an area requires removing all individuals and simultaneously 
preventing reinvasion (Bomford & O’Brien 1995, Parkes et al. 2017). The list of international 
eradications is growing rapidly for diverse taxa (e.g. Ramsey et al. 2009; Ramsey et al. 2011; 
Samaniego-Herrera et al. 2013; Russell et al. 2016). New technologies and evidence-based strategies 
(Murphy et al. 2019; Nugent et al. 2018) are allowing for increasingly larger islands and mainland 
areas to be eradicated (Martin and Richardson 2019; Robinson and Copson, 2014; Anderson et al. in 
review). 

Policy and management decisions associated with the eradication process are divided into four 
phases : (1) assessing feasibility, (2) planning control strategies, (3) assessing progress (and revising 
strategies), and (4) assessing and confirming absence of the pest species.  Some decision making will 
be informed by experience, however often decisions will have to be made in the face of substantial 
uncertainty. Decision-support tools can provide insight and reduce uncertainty ultimately making the 
decision easier. 

Quantitative decision support tools are simplified simulations of the system being studied. They help 
us understand the system and how its different components interact. A simple simulation model can 
provide insight on an ecological process or assess the likelihood of success of a management activity. 
Such models are invaluable to land managers and can help guide them in their decision-making.  

In this primer we describe the phases of the eradication process and the management decisions that 
must be made. We focus on how quantitative models can help guide/inform the decision makers, and 
the data and parameters that need to be considered for these. The intent of this primer is to provide 
land managers with a general guidance on quantitative methods that can aide in achieving pest 
eradication. Further, we describe and provide links to software tools that we have developed that are 
freely available for eradication managers to use to build a scientific foundation for decision making 
(see Section 6).  

This primer is intended to be a dynamic document. Just as eradication operations should adopt an 
adaptive management approach (Holling, 1978; Walter, 1986), the primer will be updated as we 
advance our knowledge of eradication science, and new quantitative tools become available. For 
further information or assistance gaining access to modelling tools, contact the corresponding author.  

1.1 Spatial considerations: Extent; Management zones; and sampling units 

The operation and decision making of an eradication program should be structured spatially and 
temporally. This provides a consistent framework for modelling, resource allocation for action on the 
ground, and decision making. The structure is hierarchical with at least three levels (Figure 1). The 
‘extent’ is the entire area over which the programme aims to achieve eradication. Nested within the 
extent are management zones, in which ground operations are organised and staggered over time if 
necessary.  Sampling units are nested within management zones and are the spatial unit for modelling 
(e.g. population density or detection/removal effectiveness) to inform decisions at the levels of the 
management zones or the full extent. For relatively small-area eradications, such as rodent 
eradications from small offshore islands with aerial toxin drops (e.g. Samaniego et al. 2013), the entire 
extent can be controlled and surveyed in a short period of time. In this case, a single (notional) 
management zone can cover the entire extent.  
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Figure 1.  The spatial structure of a hypothetical broadscale eradication operation (Anderson et  
al. 2017). The smallest square is the sampling unit, which is nested in a management zone, 
which is nested in the full extent (broadscale area). The conceptual eradication begins in the 
northwest of the region in 2016 and finishes in the southeast in 2034.  

 

When the eradication extent covers a very large area, and it cannot be entirely controlled or surveyed 
in a relatively short period of time, then the extent should be sub-divided into management zones and 
a two-stage broadscale eradication approach should be adopted (Anderson et al. 2017). Stage I 
occurs at the management zone level and corresponds to the removal of the pest population and 
surveillance to confirm freedom in the zone. The management zone is passed into Stage II when a 
high confidence in freedom is achieved, which allows reallocation of resources to other management 
zones. For clarity, we apply the term ‘freedom’ to refer to the complete removal of pests from a MZ, 
while the term ‘eradicated’ is reserved for the broadscale area of interest (a ‘region’ or entire country).  

 The control/surveillance operation advances progressively stepwise across the entire extent. In Stage 
II, surveillance within zones declared pest-free at stage I should continue so that any residual 
survivors are detected. Stage II surveillance is also used to estimate the probability of eradication 
across all zones (i.e. the entire extent).  
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1.2 Principles of eradication feasibility 

Eradication of a pest species is appealing in that if successful, then there are no more costs 
associated with the detrimental effects of the pest nor costs associated with ongoing control activities 
(although it should be noted that there may be ongoing costs associated with preventing immigration 
and surveillance for potential incursions). However, eradication of an established species on any 
scale, large or small, is inherently difficult (Anderson et al. 2016, Cruz et al. 2009).  

In order to successfully achieve eradication, there are three essential criteria that must be met: (1) rate 
of removal exceeds the rate of increase of the pest, (2) immigration is prevented, (3) all potentially 
reproductive individuals are put at risk (Bomford & O’Brien 1995). Three additional desirable criteria for 
determining whether eradication is preferred to sustained control are: (4) individuals can be detected 
at low densities, (5) cost-benefit analysis favours eradication over sustained control, and (6) there is 
socio-political support for eradication. 

If it is reasonable to assume that criteria 2-6 above can be met, then the feasibility of eradication is 
then dependent on whether the removal rate of the pest is high enough to eliminate the population.  
The first stage in this process is having some understanding of the current population size and spatial 
distribution/extent of the pest. Knowledge of current population levels will inform the level of effort (and 
cost) required to obtain an effective pest removal rate.   

Given an initial estimate of population size, a simulation model can be used to forecast the removal 
effort (e.g. number of devices, spacing, people days, frequency and duration of control activities) 
required to achieve eradication (Gormley and Warburton 2020; Anderson et al. 2016; Ramsey and 
Efford 2010; Ramsey et al. 2005; Glen et al. 2017; Lustig et al. 2019). These models require 
parameters related to the probability of removal of individuals, and can include additional complexity 
related to population growth, survivorship, movement behaviour and potential re-incursions, and 
landowner participation. The combined monetary and social costs of pest removal and subsequent 
surveillance to confirm eradication can be used to find the optimal effort required to achieve 
eradication as well as its likely total cost. Alternatively, if a fixed budget is assumed, the goal would be 
to determine whether eradication can be achieved with the chosen techniques within the defined 
budget. Information on the feasibility of eradication can therefore be important for determining whether 
an eradication should be attempted, or whether sustained control or containment would be a more 
viable option.  

2 Initial assessment of the pest population 

Prior to undertaking eradication activities an initial assessment of the pest population is advised to 
provide information that can be crucial for guiding eradication phase activities.  Some guidelines for 
undertaking this initial assessment follow. Quantitative models exist to assess the abundance and 
distribution of a pest population, and a suite of statistical tools that will be freely available and user-
friendly are being developed. 

2.1 Sampling frame 

The initial assessment of the abundance and distribution of the pest population can be done over 
management zone(s) or over the entire eradication extent. Either way, the extent needs to be divided 
into sampling units, which can be regular or irregular size plots that are contiguous and do not overlap.  
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The sizes of the sampling units are usually designed with the biology and underlying spatial 
distribution of the target species in mind, as well as the monitoring methods that will be used. 
Sampling units should be at least as large as the average home-range size of the target species to 
avoid possible edge effects. Ideally auxiliary information about each sampling unit will also be 
available (e.g. habitat type, topography). This information can be used as explanatory variables to 
predict how population abundance varies across the survey region. In addition, these auxiliary 
variables can be used as stratification variables to increase the precision of abundance estimates. 

In order to use this plot-based sampling frame to estimate abundance, a number of assumptions need 
to be satisfied.  Firstly, all individuals within a plot must be at risk of being detected by the chosen 
monitoring method.  Secondly, it is essential that there be insignificant movement of individuals 
between plots. Ultimately, the objective of the initial population assessment is to gather information on 
the approximate size and spatial extent of the pest population to enable further decision support on 
the feasibility of eradication and the optimal allocation of resources. Further discussions around the 
design of surveys for abundance estimation can be found in (Thompson et al., 1998). 

2.2 Initial pest abundance estimate 

An initial estimate of the size of the pest population will enable a first estimate to be made of the likely 
costs associated with achieving eradication. It will also enable an initial evaluation of different 
monitoring techniques. Several techniques are available for estimating population abundance based 
on repeated sampling of unmarked individuals, plots or resightings of marked individuals. The method 
chosen will depend on both the type of monitoring device used to make observations and the ease 
with which it can be deployed.  In general, sampling a pest population to obtain information on 
population size and/or distribution can be divided into count methods, abundance estimation based on 
marked animals and indirect methods (sections below). 

Count methods 

These involve counts of individuals using either visual methods (e.g. line transect sampling, point 
counts) or capture (e.g. trapping, hunting). Direct counts of individuals are suitable for estimating 
population size. The most accurate estimation method is a total count, in which every individual in the 
population or sampling unit is counted. However, it is usually impossible or impractical to do this, so an 
incomplete count is usually used. Statistical methods are then used to correct the incomplete count for 
imperfect detection of individuals. Here we concern ourselves primarily with data generated from 
incomplete counts. An incomplete count is related to a complete count (the estimated actual 
population size) by the equation 

𝑁𝑁� =
𝐶𝐶
�̂�𝑝

 

where �̂�𝑁 is the estimate of actual population size, C is the number of individuals in the incomplete 
count, and 𝑝𝑝 is the estimate of detectability (i.e. the proportion of the total population detected).  There 
are three basic approaches for estimating the detectability parameter 𝑝𝑝 and thus the size of a closed 
population (Borchers et al. 2010): 

1 Use changes in the number of individuals detected as some feature of the survey changes (e.g. 
line transects, point counts). 
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2 Use changes in the number detections as individuals are progressively removed (e.g. removal 
methods, change in ratio methods). 

3 Use the proportion of individually marked animals that are recaptured (e.g. mark-recapture 
methods). 

Of these approaches, (1) is the easiest to implement as it only requires observations of the pest during 
sampling.  Approach (2) requires removal of some of the pest population, which is likely to be more 
labour intensive and would usually be undertaken as part of the actual implementation of the 
eradication program.  Approach (3) can involve physical capture and marking of individuals followed 
by observations of these marked (and unmarked) individuals.  Physical marking can be quite labour 
intensive so modern techniques tend to rely on observations of unique natural markings (e.g. pelage 
patterns) to uniquely identify individuals (i.e. from remote camera images).    

Several methods are available to estimate population size that use repeat count observations of a 
sampling unit.   The most popular of these method is the binomial mixture (or N-mixture) model (J.A. 
Royle, 2004).  Other methods utilise counts of individuals as well as the time of detection (Moeller et 
al., 2018; Nakashima et al., 2018), which are usually available from time-stamped camera images.   
An additional method records the distance of individual pests from the observer from a point or line 
and uses distance sampling methods to estimate population size (Howe et al., 2017; Thomas et al., 
2010).  Some of these methods have been implemented into the online tool designed for conducting 
an initial assessment of a pest population (see section 6.1). 

Abundance estimation based on marked animals 

A more robust and usually more precise estimate of population abundance can be obtained by 
marking individuals of the target species and then releasing them back into the population. Further 
sampling is then undertaken, identifying both marked and unmarked individuals. The most popular 
method of marking individuals does not require physical capture but recognises individuals by their 
distinctive physical markings or by genetic identification.   If physical capture is used to mark 
individuals, it is advisable that GPS and/or radio telemetry collars be placed on individuals so that 
targeted removal can be undertaken if necessary. The use of GPS or radio telemetry collars (or both) 
has additional benefits as it provides estimates of space use by individuals, which can be used to help 
design an efficient removal strategy (e.g. Anderson et al. 2016; Gormley and Warburton 2020).  

Indirect methods 

Monitoring methods that yield data on the presence of one or more individuals, but not of the 
individuals themselves (i.e. scats, footprints, etc.) are indirect monitoring methods. These are 
commonly referred to as indices of abundance and are presumed to be a measure that is correlated 
with true abundance. These methods are appealing in that they are typically cheaper to implement 
than direct count or mark/recapture methods. Indices can be (a) presence/absence indices, or (b) 
relative abundance indices. Presence/absence indices (e.g. presence of sign) cannot usually be used 
to estimate population size but is more suited to estimating spatial distribution (i.e. occupancy). 
Imperfect detectability 𝑝𝑝 of index surveys can also be estimated if repeat observations are made for 
each sampling unit so that the proportion of the sampled landscape occupied by the pest can be 
corrected for imperfect detection (MacKenzie et al., 2006).  An extension of these occupancy models 
that posits a functional relationship between occupancy and abundance can be used to derive an 
approximate population size from presence/absence surveys (J Andrew Royle & Nichols, 2003), which 
may be useful in some circumstances.  
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Index surveys can also serve as an alternative method for detecting pest presence during the final 
stages of eradication activities.  This can be useful when the primary method of pest removal becomes 
less effective at low population density due to low detectability (i.e. trap-shyness).  Hence, having an 
alternative detection method(s) can be crucial for detecting the last few survivors of an eradication 
program.  Hence, index surveys can safeguard against a change in detection efficiency that could 
occur towards the end of the removal phase.  Information from presence/absence surveys can also be 
combined with count survey methods to make joint inference on estimates of population size (Chen et 
al., 1998). 

2.3 Spatial distribution 

An important component of the initial assessment is determining the spatial distribution of the pest 
species across the full extent. That is, how does pest density vary within and across management 
zones (Figure 1). Information about spatial distribution is important for designing a monitoring program 
that can provide population estimates that are unbiased and precise. Systematic sampling of all units 
across all management zones will rarely, if ever, be feasible. Therefore, a representative sampling 
regime must be devised.  If the target population is approximately randomly distributed, then a 
monitoring program can use a simple random sample of the sampling units. However, clumped spatial 
distributions are better monitored using stratified random sampling to increase precision. In the latter 
case, habitat attributes will often be used to delineate strata. Using the data from stratified or random 
samples, statistical models can be developed to predict population abundance (or relative abundance) 
in sampling units and management zones that were not surveyed. 

3 Planning eradication strategies 

3.1 Introduction 

Controlling a species at a landscape scale is inevitably an expensive endeavour (Cruz et al. 2009). 
The level of and duration of control depends on a number of factors, the main one being the overall 
management aims (eradication vs sustained control). In this primer we focus on eradication, however 
many of the same principles apply for sustained control and/or containment.  

Given a goal of eradication, how do we decide on the best control strategy to achieve it? There are a 
wide range of control tools available, the choice of which depends on factors such as the habitat 
where target species occurs. In some areas, typically remote forested areas, aerial deployment of 
toxic bait is the preferred and sometime only viable method of pest control. In other areas, pest control 
is ground-based, consisting of either bait stations, live-trapping, kill trapping or some combination. 

Even for a single control method, there are still many decisions that need to be made. For example, if 
kill-traps are to be used, the manager still must decide on a ‘trapping-regime’ including factors such as 
trap density (spacing between traps), trap-capacity (single vs multiple capture), checking interval (daily 
vs once a month) and duration (how long will traps be deployed).  
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3.2 Pest-Removal Simulation Models 

One way of selecting an appropriate control regime is to use a computer model that simulates pest 
removal, which enables a quick comparison of the relative effects on pest abundance across a wide 
range of control options. Removal methods can include trapping, bait stations with toxin and hunter 
tracks (Anderson et al, in review). These models can be used to determine whether the level of effort 
necessary to achieve eradication is feasible. A common approach is to use a spatially-explicit model 
that can simulate the ground-based removal of individuals from a pest population (Glen et al. 2017; 
Lustig et al. 2019; Anderson et al. 2016). 

The general approach assumes that removal devices are represented by georeferenced point 
locations within the area of interest, such as traps or bait stations. Hunter or dog tracks can be 
incorporated into this framework by discretising the movement tracks into points at a set distance 
interval (e.g. 50 m).  

The model simulations are initialised by creating a starting pest population of a specified size/density 
and placed randomly in the landscape with locations corresponding to the home-range centres of 
individuals. Instead of simulating actual animal movements across the landscape, each animal is 
assumed to have a circular home range. Interactions between removal methods and pest animals are 
determined by two parameters. The first is g0 (pronounced g-naught), which is the nightly probability of 
capture of an animal by a removal method located at the centre of its home range. The second is σ 
(pronounced ‘sigma’), which is the standard deviation of the bivariate (circular) normal distribution 
(Efford 2004). The radius of the 95% circular home range is given by 2.45σ, which defines the area 
where an individual spends 95% of its time. Note that values of the g0 and σ parameters will likely 
differ between species and habitats, and g0 will also differ between removal methods. There may also 
be differences in these parameters due to additional factors such as season, population density and 
individual behaviour. 

The nightly probability of each animal i being removed by device j is given by: 

𝑝𝑝𝑖𝑖𝑖𝑖 = 𝑔𝑔0exp �
−𝑑𝑑𝑖𝑖𝑖𝑖2

2𝜎𝜎2
� 

where dij is the distance between the home-range centre of the animal and the device location, or the 
point location of a hunter or dog. Animals that interact with devices or are shot by hunters are removed 
from the population. When simulating removal by trapping, traps that successfully capture individuals 
are turned off and are unavailable to capture other animals until the next scheduled trap checking 
period.  

Other model structures (e.g. Lustig et al. 2019) differ slightly in that the probability of removal is 
defined at a sampling-unit level, rather than for each individual animal-device combination. In this 
case, the probability of removal is calculated as a function of device density (e.g. bait station density) 
in that sampling unit: 

𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟 = 1 − 𝑒𝑒−2𝜋𝜋𝑔𝑔0𝜎𝜎2𝑘𝑘𝑘𝑘 

Where k is the number of days and ρ is the device density (per m2).  The sampling-unit structure 
above would also be suitable for estimating the effect of total search effort (e.g. by a hunter) within the 
sampling unit on the removal probability.  This is achieved by a slight modification of the above: 
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𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟 = 1 − 𝑒𝑒−𝜃𝜃𝑘𝑘𝑘𝑘 

Where 𝜃𝜃 is the removal rate per unit of search effort, 𝑘𝑘 is the number of days and 𝜌𝜌 is the total amount 
of search effort, per day, within the unit. Typically 𝜃𝜃 can be estimated from samples of removal and 
effort data, collected from at least three sampling periods (Gould & Pollock 1997). 

Other components of population dynamics can also be included in the simulation models. For 
example, one method of incorporating in-situ reproduction is to simulate the number of new offspring 
born each reproductive period as drawn from a Poisson distribution with mean λ, given by: 

𝜆𝜆 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 × 𝑁𝑁�1 − �
𝑁𝑁
𝐾𝐾
�� 

where rMax is the maximum rate of increase, N is the current population size and K is the carrying 
capacity of the area. Similarly, features such as juvenile dispersal, immigration, and habitat-specific 
maximum densities can also be specified (Lustig et al. 2019).  

These types of simulation models offer managers insights into the pest-removal process as well as 
allowing for sensitivity testing, i.e. how outcomes change depending on the values of species-specific 
parameters (e.g. g0, σ, 𝜃𝜃). This is particularly useful when there is likely to be substantial uncertainty 
around values for these parameters. 

These individual-based (or agent-based) models have been applied to a variety of cases to help 
provide guidance on the effort required to achieve a desired level of pest removal, including control of 
mustelids and feral cats in Cape to City (Glen et al. 2017), possum eradication in Mahia Peninsula, 
and possum eradication in the Kaitake Ranges. The TrapSim model (see section 6.1) is a freely 
available and user-friendly online tool to help managers plan eradication strategies. 

4 Assessing Progress 

4.1 Estimating residual abundance 

Consideration of the primary removal method is of great importance because the results will also be 
used to generate residual population abundance estimates. For valid estimates to be obtained, the 
primary removal method must be able to remove individuals at a rate faster than they can be replaced 
either by reproduction or immigration. This can be easily visualised using a cumulative catch curve 
(Figure 2), which plots the cumulative catch (removals) of individuals against the catch per unit effort 
(CPUE).  The negative of the slope of this relationship is an estimate of the detection rate (also known 
as the catchability coefficient).  If a clear negative relationship is not evident or if there is evidence of a 
flattening of the relationship (non-linearity), that suggests that the population might not be reducing at 
a rate high enough to achieve eradication or that the detection rate of individuals is declining.  If this 
occurs, then alternative removal techniques need to be used.  One problem with relying on the 
cumulative catch versus CPUE plot is that the relationship may suggest that all individuals have been 
removed, when in fact, eradication has not been achieved.  This occurs because the relationship in 
Figure 2 assumes that detectability is constant for the duration of removal activities when in fact, the 
residual population is no longer susceptible to the removal method (e.g. they may be trap-shy and 
therefore never get caught, resulting in detectability declining to zero). Recognizing when this has 
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occurred depends on the use of a monitoring protocol running in parallel with the primary removal 
method that is able to detect residual survivors (e.g. remote cameras or scat-detecting dogs). 

 

 

Figure 2. Plot of the cumulative catch (removals) of individuals vs the catch per unit effort for 
two hypothetical eradications with a high or low removal rate. 

Once sufficient removal and monitoring data have been collected, analyses of these data can then be 
used to update the estimate of the residual population size as well as predict the amount of additional 
effort required to achieve eradication.  In the latter case, if removal costs are known, predicted effort 
should be cost-effective relative to the probability of achieving eradication. Data from a minimum of 
three control sessions is usually required to generate an estimate of population abundance using 
removal data. The tasks undertaken to assess progress towards eradication will therefore involve: 

• Estimates of residual population abundance per time unit, using the removal data as well as data 
from any additional surveys. 

• At each time unit, predict the amount of removal effort necessary to achieve eradication. If more 
than one removal method is used, predict the most cost-effective mix of methods to achieve 
eradication based on costs per removal and the removal probability for each method. 

The above tasks need to be updated progressively as the eradication program unfolds, and the results 
should be used to update the tasks undertaken during the next time unit of eradication activities. The 
models described above in section 3 can be used in an iterative fashion to update our estimates of the 
abundance and distribution of the pest population. The ability to combine monitoring information from 
multiple sources and to update analyses as new data are acquired will allow managers to determine if 
the residual population is becoming wary of particular removal methods, and hence implement 
alternatives.   The “Eradication Progress” tool (see section 6.1) is a freely available and user-friendly 
online tool that implements some the models described above for assessing progress towards 
eradication. 
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4.2 Broadscale knockdowns 

In some eradication operations, especially if the initial abundance of the target species is high, it may 
be more efficient to attempt a broadscale initial knockdown of the population (e.g. by poison baiting) 
before using other removal methods.  In addition, for some pest species, broadscale poison baiting 
operations are the only removal technique that is feasible at large scales (e.g. invasive ants, brushtail 
possums).  In these instances, a series of knockdowns are achieved using a predetermined number of 
broadscale aerial or ground-based baiting operations. In this situation progress towards eradication is 
usually only assessed following the completion of baiting operations using one of the monitoring 
protocols specified in section 2.2.    

5 Proving Absence 

5.1 Principles of proving absence from zero detections 

It is almost impossible to provide statistical certainty about species absence, unless everywhere within 
the entire eradication extent is subject to surveillance using a detection method that is infallible.  
Hence, we usually assign degrees of confidence to species absence that provides a quantifiable level 
of uncertainty around a declaration of eradication success.   For a species to be declared absent from 
an area with a given degree of confidence, surveillance must be undertaken to confirm (or otherwise) 
that the eradication has been successful (Samaniego-Herrera et al. 2013; Ramsey et al. 2009; 
Ramsey et al. 2011). This section presents the framework behind quantitatively proving eradication 
based on ‘zero detection’ data, as well as the process of planning a surveillance network to ensure 
that managers will have enough confidence in declaring eradication success.  

Following the removal of the pest to the point where individuals are no longer being detected, a 
surveillance phase is then implemented, which involves looking for any individuals that may have 
survived the control phase. If there is evidence of the pest, it is obvious that the overall control 
operation has not been successful, and therefore eradication cannot be declared (assuming there are 
no false positive detections). However, if no individuals are detected, it does not necessarily mean 
absence of the target pest from the area, as individuals may have survived yet remained undetected.  

Given no detections, our level of confidence in pest absence depends on: 

1 How confident in eradication were we before doing surveillance? (i.e. how good was the control 
program) 

2 How hard did we look for any pests that may have survived the eradication phase? (i.e. how good 
was the surveillance network) 

We can use probabilities to quantify these confidence levels with Bayes’ theorem as follows:  

𝑃𝑃𝑃𝑃𝑃𝑃 =
𝑃𝑃𝑟𝑟𝑃𝑃𝑃𝑃𝑟𝑟

1 − �𝑆𝑆𝑆𝑆𝑒𝑒 × (1 − 𝑃𝑃𝑟𝑟𝑃𝑃𝑃𝑃𝑟𝑟)�
(1) 
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The first factor in the list, termed the Prior, is the probability that eradication was successful before any 
surveillance was carried out. The term SSe is an abbreviation of system-level sensitivity: this is the 
probability of detecting the species if it was still present. It represents how good our 
detection/surveillance network is. Bayes theorem updates our prior knowledge (Prior) with data (SSe) 
to give the posterior probability of absence (PoA1).  

Armed with Bayes’ theorem, a Prior and the efficacy of our surveillance network (SSe; see Anderson 
et al. in review), we can calculate PoA and then make a management decision as to whether to 
declare eradication or not. If the calculated PoA it is not high enough, then we can carry out more 
surveillance (thus increase SSe) until we reach a value of PoA that we are comfortable with. An online 
user-friendly PoA tool is freely available for managers to guide the development of surveillance 
strategies or to analyse data to quantify confidence in eradication success, given no detections (see 
section 6.2).  

 

 

Figure 3. Contour plots showing the relationship between the prior (x-axis) and the resulting 
PoA (y-axis) for three levels of SSe (contour lines) 

5.2 Specifying the Prior 

As shown in Figure 3, the value specified for the Prior has a large influence on the level of surveillance 
that needs to be conducted in order to confidently declare absence of the pest. For example, if we 
have low confidence that control was sufficient to eradicate the pest (Prior = 0.5), then surveillance 
efforts need to be extremely high (yielding an SSe = 0.9) to achieve a high confidence in successful 
eradication (PoA > 90%). Conversely, if the Prior = 0.8, then surveillance efforts can be reduced 
(yielding an SSe = 0.6) to achieve the same level of confidence in absence of the pest (PoA > 90%).   

 

1 Reminder: this is as long as we do not detect anything during surveillance, because if we do then that means 
that eradication has not yet been successfully achieved. 
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As described above, specifying the prior is an important task, however there is no single method. 
Options include:  

• In the absence of any information, it is recommended to specify a default prior from a BetaPERT 
distribution with a mean of 0.5, min = 0.1 and max = 0.9. 

• Expert opinion/judgement: this can range from a single expert through to the collective prior 
distribution obtained from a number of experts using an elicitation approach (Ramsey et al 2009).  

• Using information from similar previous attempts at eradication. For example, if a number of 
places have attempted a similar eradication and 60% of those have succeeded, then a mean 
prior could be set at 0.6. 

• Derive a model-based prior using a computer model to simulate the planned control (see previous 
section) and use the proportion of runs where eradication was successful as a value for the prior 
(Nugent et al. 2018). 

• A combined approach of the previous options – essentially an expert judgement, but it is informed 
by their knowledge of similar control operations, the modelled simulations and other factors (e.g. 
risk of reinvasions). 

5.3 Setting the target for declaring success 

The level of confidence in the probability of pest absence that is required (i.e. the target probability for 
deciding that eradication is successful and further surveillance efforts should stop) is essentially a 
management decision. It is impossible to achieve 100% certainty; therefore, a target stopping value 
must be chosen that is defensible and acceptable to stakeholders.  

When setting a target, it may be beneficial to explicitly consider the costs associated with making a 
wrong decision (Gormley et al 2018). For example, if eradication is declared incorrectly (eradication is 
declared successful, but then the pest is detected at a later date), there may be substantial costs 
associated with having to repeat control and surveillance. In contrast, the costs of carrying out 
extensive surveillance may be excessive relative to mop-up re-control if the eradication fails. Socio-
political factors should also be considered, such as what is the ‘cost’ associated with loss of public 
acceptance in the programme or loss of reputation if success is declared incorrectly? If this ‘cost’ is 
high, it may be might be better to set a higher stopping target value.  

For example, in New Zealand, a target of 0.95 is typically used for declaring a management unit free 
of bovine tuberculosis.  Therefore, control and surveillance must be carried out so that there is at least 
a 0.95 probability of TB freedom in wildlife. In theory this implies that one in twenty areas declared free 
will be incorrect declarations and will therefore require re-control at some point. However, this is seen 
as an acceptable level of risk when balanced against additional expensive surveillance activities 
required to achieve a higher stopping value (e.g PoA = 0.99).  
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5.4 Finding survivors: what is the worst-case scenario? 

In the context of doing surveillance to confirm eradication success, the situation may arise in which 
managers think that they have achieved eradication before doing surveillance, but n survivors are 
subsequently detected. The question transitions from ‘how confident are we that eradication has been 
achieved?’ to ‘what is the residual population abundance, given we have detected survivors?’ 
Calculating the residual abundance is described above (4.1 Estimating residual abundance), which 
can be quite complex. However, there is a relatively simple way to use the SSe estimate from Proof of 
Absence modelling to estimate the upper limit of the residual population abundance (i.e. worst-case 
scenario). We can use the following equation to estimate the minimum abundance (Y) for which we 
can be 95% (or 99%) confident that the residual population abundance (N) is less than or equal given 
n detections �𝑃𝑃(𝑁𝑁 ≤ 𝑌𝑌|𝑛𝑛)�: 

 

𝑃𝑃(𝑁𝑁 ≤ 𝑌𝑌|𝑛𝑛) = 1 − � �1− �
𝑃𝑃∗

𝑛𝑛
� 𝑆𝑆𝑆𝑆𝑒𝑒𝑛𝑛(1− 𝑆𝑆𝑆𝑆𝑒𝑒)𝑃𝑃∗−𝑛𝑛�

𝑌𝑌

𝑃𝑃∗=𝑛𝑛

 

where the SSe is the system sensitivity calculated when attempting to detect a single survivor (i.e. 
minimum occupied cells = 1; Anderson et al. 2013). This does not provide an estimate of the 
population abundance, only a level of confidence that it is lower than a set number (Y). For example, 
consider a situation in which 2 individuals were detected during surveillance. When the SSe is 0.33, 
we can be 95% confident that the residual population abundance is ≤ 12 (Figure 4).  

 

Figure 4. Probability that the residual population abundance (N) is less than or equal to Y 
�𝑷𝑷(𝑵𝑵 ≤ 𝒀𝒀|𝒏𝒏)�. In this example SSe = 0.33, number of detect animals (n) = 2, and target level of 
confidence = 0.95 (dashed horizontal line). 
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5.5 Planning surveillance 

Surveillance is a costly and time-consuming endeavour. It is therefore in the interests of managers to 
carry out enough surveillance to achieve the target level of PoA, but no more. Similarly, insufficient 
surveillance risks allowing survivors in the pest population to reproduce into a large and renewed 
widespread problem. Quantitative planning increases the chances that a cost-effective surveillance 
strategy will be deployed.  

We can rearrange equation 1 to determine the level of surveillance required (SSeReq) to move our level 
of confidence in eradication from the Prior to the target PoA:  

𝑆𝑆𝑆𝑆𝑒𝑒𝑅𝑅𝑟𝑟𝑅𝑅 =
𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇𝑟𝑟𝑔𝑔𝑟𝑟𝑇𝑇 − 𝑃𝑃𝑟𝑟𝑃𝑃𝑃𝑃𝑟𝑟

𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇𝑟𝑟𝑔𝑔𝑟𝑟𝑇𝑇(1 − 𝑃𝑃𝑟𝑟𝑃𝑃𝑃𝑃𝑟𝑟) 
(2) 

For example, if Prior = 0.9 (i.e. we are 90% sure of eradication success after our control efforts) and 
PoATarget = 0.95 (i.e. we want to be 95% sure of success), then SSeReq = 0.53; this means that we 
need to do enough surveillance to have a 53% chance of detecting any remaining individual if there 
was one present (Figure 5). If, however, we wanted to be 99% sure of absence, then for the same 
prior, a much higher level of surveillance would be needed (i.e. SSeReq = 0.91). 

 

Figure 5. Contour plots showing the relationship between the Prior (x-axis), the PoA (contour 
lines) and the SSe (y-axis)  
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The important step for managers is converting SSeReq to an actual surveillance network; that is, how 
many detection devices are needed and for how long do they need to be deployed? A good 
approximate estimate can be quickly calculated by first determining the area-wide sensitivity of a 
single device in the eradication area set for n nights, given by: 

𝑆𝑆𝑒𝑒𝑛𝑛 = 1 − �1−
2𝜋𝜋𝑔𝑔0𝜎𝜎2

𝑃𝑃𝑟𝑟𝑒𝑒𝑟𝑟 �
𝑛𝑛

 

where g0 is the nightly detection probability of an individual with a device at the centre of its home 
range, σ is the scale parameter of the home-range size (Ball et al. 2005) and Area is the size (m2) of 
the area (i.e. management zone or full extent). The number of devices D required for n nights across 
the entire area can be calculated as: 

𝐷𝐷𝑛𝑛 =
𝑙𝑙𝑛𝑛�1 − 𝑆𝑆𝑆𝑆𝑒𝑒𝑅𝑅𝑟𝑟𝑅𝑅�
𝑙𝑙𝑛𝑛(1 − 𝑆𝑆𝑒𝑒𝑛𝑛)  

6 Decision Support Tools 

As noted through this primer, we are developing several decision support tools that do the modelling 
discussed above as an aid to managers of eradication operations. This section contains a brief 
summary of those that are currently available: 

6.1 Initial pre-eradication assessment tool 

This web-based app is primarily to be used for undertaking an initial assessment of a pest population 
prior to undertaking eradication activities.  The app is freely available at the following link 
https://landcare.shinyapps.io/assessment_app/.   Below we provide some me guidance about the use 
of the app including the types of monitoring data as well as the associated models that can be used to 
undertake an initial assessment of a pest population.   

The initial assessment app employs methods based on counts of individuals and presence of sign 
within sampling units. In general, monitoring data should be collected from sampling units that are 
independent.  By independent, we mean that an individual counted (or recorded as present) on one 
sampling unit should not be able to be recorded on another sampling unit.   This is different to the 
Proof of Absence (PoA) tool (see section 6.3) where sampling units are not required to be 
independent.  Some particular models (e.g. `REST`) are tailored to particular types of sampling 
methods such as remote infrared cameras and require ancillary information to be collected.  They also 
allow the relaxation of the strict assumption of independence of sampling units required by the other 
methods.  

 

 

 

 

https://landcare.shinyapps.io/assessment_app/
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Models 

The basic models in the initial assessment app can be divided into those that just require records of 
pest presence or absence from sampling units (i.e. `Occupancy` and `Royle-Nichols` models) and 
those that require counts of individuals to be recorded (i.e. `N-mixture` and `REST`). These are briefly 
described below: 

Occupancy: This model implements the occupancy model of Mackenzie et al. (2006).  It is primarily 
used to assess the area of the region occupied by the pest from presence/absence monitoring data. 
Occupancy estimates can also depend on habitat characteristics.  Presence-absence data should be 
collected from sampling units that are independent.   

Royle-Nichols: This model implements the occupancy model of Royle and Nichols (2003).  However, 
this model has the occupancy rate being dependent on pest abundance and hence, can be used to 
provide an estimate of abundance in addition to occupancy.  The extra parameter `K` can be provided 
here which is an upper limit on the likely abundance at each site.  Larger values are preferred, but will 
increase the time to fit the model. 

N-mixture:  This model estimates pest abundance from counts of individuals collected from 
independent sampling units using the “N-mixture” model of Royle (2004).  As for the “Royal-Nichols” 
model, the parameter `K` should also be provided. 

REST: This model estimates pest density from encounters of individuals from camera traps using the 
"Random Encounter and Staying-Time" model of Nakashima et al (2018).  In addition to recording the 
number of encounters at each camera, the "staying time" of each individual in front of the camera must 
also be recorded.  The staying time can be estimated as the difference between the exit and entry 
times into the camera's field of view.  This model also requires an estimate of the effective detection 
area of the camera (i.e. area within which detection of an individual is almost certain).  This can be 
estimated using distance sampling techniques.  

All models in the assessment app (and eradication progress app – section 6.2) require inputs in 
particular formats.   

• Region boundary: An ESRI shapefiles that define the region of interest.  

• Habitat raster: A single or multiple *.tif file(s) containing a map of habitat variable(s) that could 
be used predict spatially-varying abundance across the region. 

• Detector locations:  A csv file containing coordinates of monitoring devices in the same 
projection as the region boundary. 

• Detection histories: A csv file containing a matrix of detection or counts with observations for 
each monitoring device in rows and repeat observations for each device (e.g. days) in 
columns.  
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In addition to the above, the REST model requires some additional data that is needed by that model. 

• Stay: A csv file containing a single column with the residence time (i.e. seconds) that each 
encountered individual spent in front of the camera (i.e. the difference between exit and entry 
times). 

• Censored: A csv file containing a single column containing a variable indicating whether the 
exit time for each encountered individual was observed (`censored` = 1) or unobserved 
(`censored` = 0). 

• Active hours:  The number of hours within a 24 hour period that the target species is usually 
active for. Species that are active at any time of the day would have a value of 24 and species 
active only at night would have a value around 12. 

• Area of camera Viewshed: The area of the effective detection zone in front of a typical camera 
(m2). This can be estimated using distance sampling techniques.  An approximate area can be 
calculated by  

𝑃𝑃 =  𝜋𝜋𝑟𝑟2 ×
𝜃𝜃

360
 

Where 𝑟𝑟 is the maximum radial distance from a camera that a species would be detected with near 
certainty and 𝜃𝜃 is the coverage angle of the camera (in degrees).  For more details on estimating an 
effective camera area, see Hofmeester et al. (2017).  

• Viewshed area multiplier: The multiplier required to express density in units different from the 
units of the camera viewshed.  If the camera viewshed is in m2 then to express pest density in 
hectares the “viewshed multiplier” should be set to 10,000.  If density in km2 is required, it 
should be set to 1,000,000.    

6.2 Assessing eradication progress 

This web-based app is primarily to be used for assessing progress towards eradication.  As an 
eradication program progresses, and additional data become available, the app will provide updates 
on the estimate of the residual size of the pest population remaining or the residual proportion of 
occupied sites. The app is freely available at the following link 
https://landcare.shinyapps.io/eradication_app/.   Below we provide some guidance about the use of 
the app including the types of monitoring data as well as the associated models that can be used to 
undertake progress toward eradication. 

Consideration of the primary removal method is of great importance because the data collected from 
this method will be used to generate population estimates. For valid estimates to be obtained, the 
primary removal method must be able to remove individuals at a rate faster than they can be replaced. 
This can be easily visualised using a cumulative catch curve, which plots the cumulative catch 
(removals) of individuals against the catch per unit effort (CPUE) (Figure 6).  

https://landcare.shinyapps.io/eradication_app/
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Figure 6.  Plot of the relationship between CPUE and cumulative catch 

The negative of the slope of this relationship is an estimate of the detection rate (also known as the 
catchability coefficient).  If a clear negative relationship is not evident or there is evidence of a 
flattening of the relationship (non-linearity), then that suggests that the population might not be 
reducing at a rate high enough to achieve eradication or that the detection rate of individuals is 
declining.  If this occurs, then alternative removal techniques need to be used.  One problem with 
relying on the cumulative catch versus CPUE plot is that the relationship may suggest that all 
individuals have been removed, when in fact, eradication has not been achieved.  This occurs 
because the relationship in Figure 6 assumes that detectability is constant for the duration of removal 
activities when in fact, the residual population is no longer susceptible to the removal method, (e.g. 
they may be trap-shy and therefore never get caught, resulting in detectability declining to zero). 
Identifying this situation depends on the use of a monitoring protocol running in parallel with the 
primary removal method that is able to detect residual survivors (e.g. cameras or scat-detecting dogs). 

Models 

The models in the eradication progress app are based on closed population removal estimators.  This 
means that the models require data on the total catch of individuals of the pest species removed, at 
each sampling location, for each removal period (or "session").  Here a period refers to a distinct 
period of time where removal of the pest is actively occurring.  For example, rodent trapping might be 
undertaken over four consecutive nights, once a month for five months.  Hence, there are five periods 
or sessions with each period consisting of four nights trapping. Data from at least three periods are 
required for use in the models used here. These models also assume that the population is closed for 
the duration of the eradication program.  In the example above this would mean that the rodent 
population is not subject to births, immigration, emigration or natural mortality over the five periods so 
the only change to the population is due to the removals.  Alternative models that relax this 
assumption and allow for recruitment and natural losses to the population in addition to the removals 
will be added to the app soon.  At the present the following models are available 

• remGP: This model implements the catch-effort model of Gould & Pollock (1996). It is an 
aspatial model which means that removals are aggregated over all removal devices for each 
period.  This means that device locations and habitat information are not used or required for 
this model.  The catch and effort data are assembled from the removal histories by summing 
removals from each device, separately for each period. Effort data is calculated as the number 
of devices set in each period.  
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• remMN: This model implements the multinomial removal model of Haines (2018).  Unlike 
remGP, device locations are required for this model and habitat information can be used to 
model spatial variation in initial abundance. Device locations are assumed to be independent.  

• remGRM: This model estimates the generalised removal model of Dorazio et al. (2005). 
However, it also has the facility to include additional monitoring data into the analysis in 
addition to the removal data.  The additional monitoring data are assumed to be derived from 
monitoring devices set in the same general vicinity (or a subset thereof) as the removal 
devices.  Hence, the additional monitoring data should have the same number of rows and 
columns as the removal data and are uploaded into the app using `detection histories` button.  
Removal devices without an associated monitoring device should have an `NA` inserted for 
the appropriate row in `detection histories`.  

All these models provide estimates of the initial abundance of the pest species (i.e. before the start of 
the eradication activities) as well as the residual abundance (abundance following eradication 
activities).  As more eradication “sessions” are conducted, the updated detection history files should 
be uploaded into the app and revised estimates obtained.  For more information about the use of this 
app, please consult the in-app help file. 

6.3 TrapSim: Predicting removal rates with trapping 

TrapSim (Gormley & Warburton 2017),2 is an online tool that was adapted from the model of Glen et al 
(2017) with the intention of providing a simple user-interface to enable managers to run their own 
trapping simulations. It is a relatively simple tool with few parameters. It is web-based and therefore 
able to be accessed online and run by land-managers after minimal training or guidance. Having a 
simple model however comes at a cost in that a level of realism is sacrificed for the sake of simplicity 
and speed. A limitation of TrapSim is that it cannot model combinations of very large populations sizes 
nor very large trap networks due to the model structure of calculating the distance and probability of 
capture for every combination of trap and animal. 

TrapSim is recommended for an exploratory first look at a trap network so managers can narrow down 
from among a wide range of options. It is a ‘ready-reckoner’ that allows for relative comparisons 
between proposed trap networks, allowing the manager to see whether they are in the right ‘ball-park’ 
in terms of a proposed trap regime. The simple user-interface and deployment on-line allows 
managers to run scenarios without requiring them to have knowledge of the underlying model, or 
training in quantitative ecology, coding, etc.  

The model of Lustig et al (2019) can be used subsequently to further refine the trap network by 
including more levels of realism (e.g. immigration, higher flexibility in trapping regimes). The additional 
features mean that it is computationally more intensive than TrapSim, and therefore instead of running 
online, it is typically run on a high-powered computer. Furthermore, there is no user-interface and it is 
run via computer scripts. While this model can be made available to managers, it must be run by 
someone with expertise in the programming language. Lustig et al. (2019)’s model includes features 

 

2 TrapSim was written in the R programming language (R Core Team 2017), and implemented using the R 
packages shiny (Chang et al. 2016) and leaflet (Cheng and Xie 2016). It is freely available on the internet at 
https://landcare.shinyapps.io/TrapSim  

https://landcare.shinyapps.io/TrapSim
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such juvenile dispersal, immigration, and habitat specific density, and can be customised to model 
staggered roll-out of trapping across an area (e.g. Mahia reference).  

6.4 Proof of Absence  

The Proof of Absence (PoA) model is an online statistical tool for eradication managers to analyse 
surveillance data to quantify a posterior probability of absence of a target species given no detections 
have occurred. It has a user-friendly point-and-click interface to upload data and set parameter values. 
It is flexible to accommodate any species and any spatial scale (extent and sampling unit). The PoA 
Tool is freely available at https://landcare.shinyapps.io/shiny_poa/.  

The modelling approach superimposes a grid-cell system on the area of interest (extent). The grid 
cells correspond to the sampling unit discussed above. The sampling unit for this model is set 
differently from that described in section 2.1 and should be much smaller than a typical home range of 
the pest species. Each sampling unit is characterized by a relative risk of where a pest could survive in 
the landscape and/or where an immigrant pest could settle after incursion in the area of interest. There 
are two general types of surveillance data that can be analysed by the model: point detection devices 
and grid-cell surveillance. Examples of point detection devices are traps, tracking tunnels, cameras 
and chewcards. Hunter or scent-dog GPS tracks can also be discretised to a set interval of points and 
be modelled as “point devices” (Anderson et al, in review).  Each point device on the landscape has 
the potential to detect a pest that has a home-range centre in sampling units that surround the 
surveillance device. The detection parameters for point devices are g0 and σ. An example of grid-cell 
surveillance is the probability that the public will detect a pest species in a given grid cell over the 
surveillance period. The associated parameters are the mean and standard deviation of the probability 
of detection over the surveillance period. 

The PoA model relies on three different types of spatial data: 1) the boundaries of the area of interest; 
2) the location of the surveillance devices, sentinel captures or grid surveillance; and 3) an optional 
grid of relative risk of pest survival or immigrant settling after control (Figure ). 

https://landcare.shinyapps.io/shiny_poa/
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Figure 6. Diagram of Proof of Absence workflow, showing data requirements and input 
parameters. Results include predictions of the probability of absence, the overall system 
sensitivity, and a spatial map of surveillance sensitivity across the entire extent.  

The user can partition the surveillance data into sessions (e.g. months or years) to assess how the 
probability of absence changes over time. In Figure 7 the target probability of absence is achieved in 
the middle of 2021, and the system sensitivity, or the probability of detecting at least one individual, 
increased annually. 

 

Figure 7. Graph of the PoA (left panel) of nutria in eastern United States (Anderson et al. in 
review). The PoA increases annually and exceeds the target probability of absence (dashed 
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horizontal line) in the middle of 2021. System sensitivity, or the probability of detecting at least 
one individual with the deployed surveillance (right panel).  

6.5 Jess4Pests 

JESS4Pests (Just Enough Surveillance Sensitivity For Pests) is an online tool that was developed for 
estimating how much surveillance is required to confidently prove absence of a pest. A screenshot of 
this web application can be seen in Figure 8; the tool is freely available at: 
https://landcare.shinyapps.io/JESS4Pests 

Step1: The user enters the Prior and the Target value for PoA for their region and JESS4Pests 
calculates the required SSe. This value is then converted to the minimum number of total devices and 
devices per ha, based on: 

i the area targeted for eradication  

ii the detectability parameter (g0) 

iii the home-range parameter (σ) 

iv the number of nights each device is set for. 

Step 2: the user can explore various device spacings to achieve a layout that will match the number of 
devices that was calculated in Step 1. The tool will re-calculate the expected SSe that the user-
specified detection array will yield and the subsequent PoA that would result. The user can also 
upload a planned detection network to see what level of SSe it will deliver. 

 

Figure 8: Screen shot of JESS4Pests with an example applied to Miramar Peninsula, Wellington 

https://landcare.shinyapps.io/JESS4Pests
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7 Summary/Synthesis 

It is well established that invasive species are a threat to biodiversity, ecosystem function and 
services, and primary productivity (Gurevitch and Padilla 2004; Vitousek et al. 1997). Given the high 
financial expenditures required in perpetuity to minimize impacts through pest control (Pimentel et al 
2001), eradication attempts are increasing in number and can result in important positive ecological 
outcomes (Cleeland et al. 2020; Jones et al. 2016; Russell and Holmes, 2015). However, eradication 
of an established species on any scale, large or small, is inherently difficult and financially expensive 
(Anderson et al. 2016, Cruz et al. 2009). Decisions associated with eradication operations need to be 
evidence based to ensure cost-efficient strategies are adopted and to satisfy concerns of funders, 
policy makers, managers and the public. 

Policy and management decisions associated with the eradication process are divided into  four 
phases : (1) assessing feasibility, (2) planning control strategies, (3) assessing progress (and revising 
strategies), and (4) assessing and confirming absence of the pest species. In this primer we have 
presented general methodologies and models for providing objective support for these decision 
processes. We covered a suite of easy-to-use and not-so-easy-to-use models that are available to 
eradication managers to obtain guidance for important decisions. The models can incorporate high 
levels of biological and operational complexity, but this comes at the cost of increased difficulty for 
users and may require the support of quantitative ecologists. Managers need to seek objective and 
quantitative support for their decisions. This may be through the use of available online tools, or 
consulting with quantitative ecologists. Answers to their questions can be found. 

We have developed and made available important tools tailored for end-users that are freely available 
online and use a point-and-click graphical user interface. The initial assessment and eradication 
progress tools analyse a variety of data to inform on the initial extent of the pest population and 
progress towards eradication.  A wider variety of data analysis methods (e.g. for search encounter 
data) will be added to these tools in the near future.  The TrapSim tool is a simple simulation model 
that allows an exploration of the required effort to achieve eradication and the best strategy for 
deployment of pest control technologies (phases 1 and 2). The Proof of Absence tool is a statistical 
model that allows eradication managers to quantify a probability of absence of a target species given 
no detections have occurred (phase 4). This tool provides quantitative support to the decision to 
declare eradication success, estimates the additional amount of surveillance necessary to meet a 
target stopping point, or can be used to identify cost-efficient surveillance strategies. The Proof of 
Absence tool is flexible in that it can accommodate multiple surveillance methodologies and complex 
ecological attributes. In contrast, the Jess4Pests is a less flexible tool but easier to use. It can provide 
general guidance on surveillance effort required to meet objectives, such as the number of devices 
and spacing (phase 4). 

The availability of all these online user-friendly tools, in addition to the more complex tools that require 
expert knowledge, create the potential to increase the cost-effectiveness of eradication operations. 
However, tools do not answer questions by themselves. Managers must plan to incorporate these 
tools early into the eradication program, which may require developing in-house quantitative capability 
or engaging external experts.   
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