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EXECUTIVE SUMMARY 
Robust and repeatable methods for surveying pest animals are required to measure the impact of 
control strategies. However, while many organisations undertake control of pests, including 
governments, contractors, non-government organisations and landholders, very few have the 
resources or expertise to effectively measure the density of pest animal populations.  

The increasing affordability of ‘drones’ and thermal imaging cameras has resulted in many land 
managers using these tools to survey pest animals; however, a limitation to the use of this technology 
is people’s ability to robustly analyse the footage generated. 

We developed a platform that automatically analyses thermal footage from aerial surveys: ThermEye. 
ThermEye provides a repeatable, unbiased platform for detecting animals, identifying species and 
recording their location. It uses a machine-learning framework. The resulting output can then be used 
to generate robust, accurate density estimates for target pest species. 

ThermEye will now allow land managers, who typically lack the resources of a university or 
government department, to perform robust surveys of vertebrate pests, and therefore measure the 
efficacy of their control programs. By measuring the impacts of their control programs, land managers 
can demonstrate success, target their efforts, improve approaches and justify increasing investment. 

Importantly, the machine-learning framework that underpins ThermEye allows for its models to be 
constantly improved and refined, meaning the tool can become more accurate over time, for all users. 
ThermEye makes it easier for land managers to effectively survey vertebrate pest animals by 
reducing the barrier to entry and, as such, will result in greater efficacy and transparency of control 
programs. 
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INTRODUCTION 
LANDSCAPE-SCALE MONITORING IS ESSENTIAL FOR BIOSECURITY 
AND CONTROL 

The widespread adoption of intensive agricultural activities and practices throughout the 20th century 
has provided abundant opportunities for vertebrate pests, leading to increased human–wildlife conflict 
worldwide (Witmer 2007). In Australia, many vertebrate pests – such as feral pigs, feral deer, and 
rabbits – are well established and widely distributed, and effective monitoring programs need to be 
suitable for deployment at a landscape scale.  

If we understand the distribution and density of the target species, it is much easier to implement and 
assess a targeted management approach, whether we are responding to a disease incursion or 
performing ongoing control activities.  

Commonly used monitoring techniques such as aerial surveys and camera trap arrays can be labour 
intensive; require substantial investment in equipment and personnel; carry safety risks; and 
sometimes only generate indices, rather than density estimates. 

THERMAL SURVEYS INCREASE DETECTIONS, BUT PROCESSING THE 
FOOTAGE IS EXPENSIVE 

Using thermal sensors to survey wildlife is a rapidly growing field (Garner et al. 1995; Gill et al. 1997; 
Haroldson et al. 2003; Allison and Destefano 2006; Mccafferty 2007). Thermal sensors have the 
potential to address common issues associated with traditional survey techniques such as visual 
acuity and observer fatigue (Fleming and Tracey 2008), especially when attempting to detect cryptic 
targets or surveying large areas. However, digital footage (thermal or otherwise) generates hours of 
footage that requires time-consuming and laborious analysis. 

There are multiple commercial providers performing thermal surveys of large vertebrates, both pests 
and native species, throughout Australia. Each provider uses its own analysis approach to score 
footage, some of which are proprietary, but all require at least one human observer to manually view 
the footage. In addition, numerous land management organisations use thermal cameras fitted to 
drones to detect vertebrate pests, but many do not have the resources to analyse this data in a robust 
way to produce a density estimate. As a result, thermal surveys that aim to monitor vertebrate pests 
are expensive and highly variable in their quality. 

Automated systems for detecting and identifying target objects from thermal imagery have the 
potential to quickly and accurately analyse large imagery datasets. In the current project, we aimed to 
develop automated analysis models for thermal imagery that incorporate machine learning to further 
improve their processing efficiency. 

Our objective was to provide an analysis platform that is compatible with all thermal imagery, and 
equally accessible to all stakeholders and end users. Our aim was that the platform would be capable 
of using flight-path data and video footage from aerially deployed thermal sensors to identify target 
heat signatures and map their occurrence. 

OBJECTIVES 

Our central research questions were: 

1. Can automated software improve the speed and accuracy of analysing thermal imagery for 
the presence of multiple pest species? 

2. Can consumer-grade, as well as high-end, thermal sensors provide landscape-scale 
monitoring of pest species as part of an integrated pest management program? 
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3. Can a deep-learning computer vision model enhance the accuracy and efficiency of thermal 
imagery analysis for multiple pest species? 

Our project objectives were to: 

• demonstrate combined computer vision and geolocation software for detecting target objects 
from thermal imagery 

• develop a deep-machine-learning model for fully autonomous analysis of thermal imagery 
analysis for monitoring multiple pest animal species at a landscape level 

• demonstrate the application of automated thermal imagery analysis for managing multiple 
pest animal species 

• communicate our outcomes and promote end-user uptake of technology. 
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METHODS 
FINDING OUT WHAT USERS NEED 

A human-centred design (HCD) process was used to identify and unpack the requirements for an 
animal-detection solution that fits the needs of users. The methodology is divided into four steps – 
discover, define, develop and deliver – and focuses on end-user experiences to capture different 
perspectives on the collection and analysis of video for the detection of vertebrate pests. 

DISCOVER 

The objective of the discovery phase was to engage with end users from across Australia and 
understand their perspectives on collecting and analysing video to detect vertebrate pests. Using an 
online platform to capture insights, 13 representative users from government, universities and industry 
were interviewed. Users included pest control officers and managers, researchers, drone operators, 
helicopter pilots and primary producers from across Australia. Each end user explained their existing 
processes, the strengths of each approach, and opportunities for refinement. 

DEFINE 

Insights captured in the discovery phase (187 insights) were synthesised to identify the value 
proposition for potential solutions for detecting animals. We consolidated the strengths and 
weaknesses, and then mapped each to key themes across the industry (Figure 1). 

 

Figure 1. Insights, strengths and weaknesses of existing methods were synthesised using an online platform. 

DEVELOP AND DELIVER 

The develop and deliver phase used the key themes identified in the define phase to develop a set of 
key insights to inform the requirements for developing an improved animal-detection solution. Across 
the user interviews, we consolidated the 187 insights into 13 key insights (Table 1). We then 
prioritised them with the project team to deliver the requirements of a solution that would fit the needs 
of users. An ideation session was then undertaken with the project team to generate conceptual ideas 
on how a solution would best work and inform the design and development of the platform. 

Using the insights and concept ideas generated by the project team, a design of the platform was 
created. The design focused on delivering: 

1. an artificial intelligence (AI) model to automate the detection of vertebrate pests (addressing 
insights 1,3,4,6,12) 

2. a tool to simplify and standardise the approach and process for analysing video footage 
(addressing insights 2,3,4,7,8,9,10,11). 
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Table 1. Key insights gained from the human-centred design process 

Insight description Findings 
1. Deer and pigs are the most requested animals.  The solution should first focus on accuracy for detecting deer and pigs. 
2. Common technologies are used by all users: 

a. DJI drones are used by all users interviewed. 
b. FLIR thermal sensors are the most common. 
c. Users all have multiple batteries. 

There may be potential to streamline solutions using DJI tools making it easier for 
users. 

3. Users of the solution may range from scientists, PhD students, 
farmers and pest management officers. 

The solution must take into account all user types and their capabilities, with a 
design focused on ease of use to ensure adoption is successful.  

4. Inconsistent methods and manual processing of footage result in: 
a. loss of productivity 
b. difficulty determining accurate control measures 
c. difficulties in showing return on investment. 

The solution must attempt to use standardised processing methods and providing 
outputs fit for users. 

5. There is a need for real-time labelling of targets while in the field, and 
for analysing large files taken from large areas, with the ability to 
compare results over 6–12-month intervals to determine the success 
of control measures. 

The solution should take into account the identified use cases (Appendix 2) when 
designing how the system needs to work. 

6. Where to survey is primarily determined through local landholder 
knowledge. 

Data collected from the solution should be combined with local knowledge to ensure 
effective control measures. 

7. The reason for analysis is primarily around pest management. The solution should still consider possibilities that functionality may extend into other 
areas (e.g. flora/weeds); however, this would be outside the scope of this project. 

8. Users prefer raw data outputs for easier integration into their existing 
work and applications. 

The solution should display results and output raw formats to fit into users' 
workflows. 

9. It is very common for surveying to be completed in areas of little or no 
data/cellular reception. 

The solution must take into consideration no data/cellular reception at the time 
footage is collected. 

10. Parameters used to collect footage can vary. A user guide for best practices will need to form part of the solution to ensure 
consistency and accuracy. 

11. Different approaches are being used to store footage and results (e.g. 
portable hard drives, paper notes, Excel documents, etc.). The solution should standardise the way analysed data is stored and used. 

12. The biggest opportunities are likely to be in the effectiveness of 
management and justification of costs. 

The output of the solution should deliver data insights that can easily be used for 
better effectiveness of management and justification of costs. 

13. Areas being surveyed are often high-density vegetation areas. This highlights the need of people using thermal to be able to see through dense 
vegetation for accurate detection. 
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AERIAL IMAGERY WAS USED TO TRAIN THE ALGORITHM 

To provide the training data required for the development of the automated detection algorithm, 
thermal footage of vertebrate pest species was gathered from across Australia, including from the 
south-west and mid-west of Western Australia, south-east Queensland, and New South Wales.  

After extracting frames from the videos, each one is then tagged (the target animal is identified on the 
image, and the species is identified; Figure 2). This library of known images provides the training 
database which the model uses to learn to identify animals and distinguish species.  

To ensure the model is trained on realistic data, training libraries must be extensive (Table 2), 
including data from a range of environments and conditions, as well as variable image quality (i.e. 
images with part of the animal obscured by vegetation, and imagery from variable sensor quality). 

Table 2. The size of the dataset used to train the final version of the model 

Species Number of frames 

Pig (Sus scrofa) 8,500 

Kangaroos (Macropus fuliginosus and Osphranter robustus) 7,000 

Deer (Cervus elephas and Dama dama) 3,000 
 

 

Figure 2. Example of tagged images (right column) used to train the model, with untagged images for comparison 
(left column). The final version of the model was trained to detect pigs (a, b), kangaroos, (c, d), and deer (e, f).  
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INTRODUCING THERMEYE 

ThermEye is the automated analysis platform built as a result of this work.  

ThermEye accepts video from helicopter surveys and footage from remotely piloted aircraft (‘drones’). 
The platform requires the flight log and video file to be uploaded (Figure 3), and the UTC start time of 
the video, with an offset for conversion to local time.  

To reduce processing time, ThermEye splits videos into non-overlapping still frames, which are then 
analysed as images. 

 

Figure 3. How ThermEye processes and analyses images 
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After analysis is complete, the platform produces: 

• a folder containing all the analysed images 

• a folder containing screenshots of all identified target species 

• a .kml (a file format used to display geographic data in a map browser such as Google Earth) 
plotting the footprint of all non-overlapping frames 

• a .kml of all identified target species (Figure 4) 

• two .csv files, one containing the details of each capture, including location, confidence, and 
species; and another .csv designed to be imported directly into the package distance in R. 

 

Figure 4. An example of the two .kml outputs from the ThermEye, showing (a) the survey coverage and 
detections, with (b) a measure of confidence 
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RESULTS: THERMEYE IS FASTER THAN HUMAN OBSERVERS BUT 
FAILS TO DETECT SOME ANIMALS 

A key component in developing any survey tool is validation: comparing the new approach to 
alternative, pre-existing approaches. Validating new tools is critical to understanding if the new 
approach improves on previous methods, or how it can be compared. This is particularly important 
when an automated approach is being developed to replace a human observer method. 

ThermEye was able to analyse thermal footage at a rate of approximately 0.11 minutes of analysis 
per minute of footage, compared to traditional human scoring, which takes approximately two minutes 
of analysis per minute of footage (Figure 5). 

ThermEye analysis is 12.5 times faster than human analysis – it reduces analysis time to eight 
per cent of the current requirement. 

 

Figure 5. Average analysis time required to process two thermal survey videos 

In a comparison across two aerial surveys, we compared the number of feral pigs and kangaroos 
detected by an expert observer, a novice observer and ThermEye. 

In Survey 1, the total feral pig observations of the novice observer were 98% of the expert observer 
recorded; however, ThermEye recorded six per cent of the expert’s observerations (Figure 6). 
Similarly, in Survey 2, while the novice observer recorded 59% of the total records of the expert 
observer, ThermEye recorded only three per cent. 

 

Figure 6. The total number of detections of feral pigs from two thermal survey videos 
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Figure 7. The total number of detections of kangaroos from two thermal survey videos 

Similar to feral pigs, ThermEye detected fewer kangaroos than both the expert and novice observer 
in both surveys (Figure 7). There was greater variation between human observers when recording 
kangaroos than feral pigs.  

Currently, ThermEye is not detecting target species with enough reliability to be acceptable. However, 
re-training and updating the model underlying the program is a simple process. Developing a usable 
and reliable interface and analysis process is the primary foundational step, and refinement of the 
model can follow easily from here. 
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RESULTS 
THERMEYE WILL MAKE AERIAL THERMAL SURVEYS MORE 
AFFORDABLE 

Automated analysis of digital footage can reduce the time required for analysis; reduce human 
observer bias and fatigue; and standardise analysis approaches across surveys, regions and years. 
Automated analysis will therefore make these surveys more efficient and robust, leading to more 
affordable surveys.  

As of November 2022, the ThermEye detection model is still being refined and developed, and has 
not been used in an operational survey. As such, there have been no changes yet to on-ground 
management. 

Likely implications when it is used on-ground are: 

• increased use of thermal surveys to monitor vertebrate pests 

• improved robustness of thermal surveys conducted by non-commercial providers 

• standardised analysis methods across surveys, regions, organisations and years 

• better ability to measure the density of pest populations 

• greater ability to measure the effect of pest control operations 

• greater leverage of thermal data collected from a variety of sources. 

AUTOMATION INCREASES EFFICIENCY, BUT AERIAL SURVEYS ARE 
STILL EXPENSIVE 

Analysis of thermal footage is a key component of thermal surveys; however, it represents a small 
component of the cost of such surveys.  

All thermal surveys require the use of a thermal-sensing camera, which may cost anywhere from 
$15,000 for small drone-mounted models, to over $100,000 for custom-built helicopter-mounted 
models. Secondly, an aerial platform must be used: either a drone, of which a suitable model may 
cost $10,000 to purchase; or a helicopter, which may cost $2,500 per hour. Finally, licensed pilots are 
required for both drone and helicopter surveys, and camera operators are also required in helicopter 
surveys. As a result, aerial thermal surveys are expensive. For example, a recent survey in WA cost 
approximately $4,500 per hour, or $78 per km flown.  

Analysis of thermal imagery by a human observer ranges in cost from $60–150 per hour of footage, 
depending on the personnel used. As such, while automation of the analysis of footage will reduce 
analysis time in surveys, it is unlikely to represent a dramatic reduction in the cost of those surveys. 

MACHINE LEARNING ALLOWS ANALYSIS TO IMPROVE AS MORE DATA 
IS ANALYSED 

Machine learning, the process by which an algorithm is improved over time based on continuous 
feedback and training, provides a significant opportunity for the automation of analysis. As such, the 
model underlying ThermEye can be periodically re-trained. This represents an underlying strength of 
using machine-learning approaches: they can be continually refined and improved. 
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DISCUSSION 
THE NEXT STEPS ARE TRAINING, SUPPORT AND EXTENSION 

TRAINING THE MODEL 

Currently, ThermEye is performing poorly compared to human observers. This is an indication of the 
comparatively small amount of data the model has been trained on and exposed to. As such, the 
model requires additional training data and validation. Gaining additional training data to increase the 
robustness of the model will improve its performance. 

COMMERCIALISING THERMEYE 

For a platform such as ThermEye to be accessible to all users and to be refined over time, it will 
require continual support. This includes an organisation to host the software, address faults and 
collect additional training data to re-train the underlying model. Commercialising ThermEye will 
provide the financial backing for this support to occur. Currently, a trademark application has been 
accepted for the ThermEye name and is currently in the waiting period prior to registration. 

EXTENDING THERMEYE TO REAL-TIME ANALYSIS 

When conducting aerial-shooting operations, detecting targets is a key component of effective control. 

The model underlying ThermEye that allows identification of target pest species could be deployed 
during aerial-shooting operations, providing real-time and accurate identification of targets. This will 
provide initial identification of species to shooters/observers; allow shooters to quickly prioritise and 
engage targets; and where necessary, re-acquire targets following engagement.  

The rollout of ThermEye into a real-time analysis format has received significant in-principle support 
from potential end users during stakeholder engagement activities. Importantly, however, extending 
ThermEye to real-time video analysis is likely to require significant development of a fundamentally 
different architecture. 

WHAT HAVE WE LEARNED? 

THE PLATFORM IS AS IMPORTANT AS THE DETECTION MODEL 

Training a model to identify target pests is very achievable; however, the platform that supports the 
model – allowing users to upload footage and receive results logically and efficiently – is just as 
important. The human-centred design approach used in this project informed the well-targeted design 
of ThermEye, resulting in a platform that is logical and accessible, and produces outputs (such as 
.kml files of survey coverage and screenshots of identified targets) that allow users to feel confident in 
the results. 

HUMANS SEE MOVEMENT; MACHINES SEE SHAPES 

ThermEye breaks video footage into non-overlapping images and then identifies targets from these 
images. In comparison, when analysing thermal footage, human observers rely on both the detection 
of the ‘hot body’, but also the movement patterns and behaviour of the target object, to identify the 
species. Using the current approach, it is not possible to directly analyse video footage, which would 
allow assessment of animal behaviour and movement. This represents a key difference between the 
two approaches, and is likely the cause of observed differences in results. 

AERIAL THERMAL SURVEY DESIGN IS STILL KEY 

While refinement is an important component of continual development of monitoring techniques, a 
robust and repeatable survey design is still a fundamental requirement. Aerial thermal surveys to 
monitor pests must be carefully designed to be able to calculate the desired metric. This planning 
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process must take into account logistical constraints, biological factors and the requirements of the 
statistical test used, all processes that cannot be automated. 
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APPENDICES 
APPENDIX 1. REMOTE SENSING JOURNAL PAPER: ‘AUTOMATED 
DETECTION OF ANIMALS IN LOW-RESOLUTION AIRBORNE THERMAL 
IMAGERY’ 

See: Ulhaq A, Adams P, Cox TE, Khan A, Low T and Manoranjan P (2021) ‘Automated Detection of 
Animals in Low-Resolution Airborne Thermal Imagery’, Remote Sensing, 13(16):3276. 
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APPENDIX 2. END-USER SURVEY RESULTS 
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